

CMAQ on AWS Tutorial

Warning

This documentation is under continuous development
Previous version is available here: CMAQv5.3.3 on AWS Tutorial

Community Multiscale Air Quality Model

The Community Multiscale Air Quality (CMAQ) modeling system an active open-source development project of the U.S. EPA. The CMAQ system is a Linux-based suite of models that requires significant computational resources and specific system configurations to run. CMAQ combines current knowledge in atmospheric science and air quality modeling, multi-processor computing techniques, and an open-source framework to deliver fast, technically sound estimates of ozone, particulates, toxics and acid deposition.

 1. Create Single VM

1. Create Single VM

Elastic Compute Cloud (EC2) Instances can be used to create a virtual machine.
This tutorial will explain how to use a public Amazon Machine Image (AMI) that is pre-loaded with software and input data to run CMAQv5.4.

	1.1. Create a VM from the AWS Web Console

	1.2. Create a VM using the AWS Command Line

	1.3. Run CMAQv5.4 on c6a.2xlarge

 1.1. Create a VM from the AWS Web Console

1.1. Create a VM from the AWS Web Console

Here we will use an Amazon Elastic Compute Cloud (EC2) C6a instance to run a small CMAQ benchmark case. The software needed to run the benchmark is pre-installed on a public Amazon Machine Image (AMI). The AMI contains all the software required to spin up your virtual server including OS, libraries (MPI, netCDF, I/O API, CMAQ) as well as input data for the benchmark case, publicly available through the AWS Open Data Program.

The first step is creating an Virtual Machine (VM) from the AWS Web Console. If you are not able to access the AWS Web Console, skip to section 1.2 to learn how to use the AWS Command Line Interface (CLI).

Note

When working on the AWS Cloud you will need to select a Region for your workloads. (See AWS blog on What to consider when selecting a region). The scripts used in this tutorial use the us-east-1 region, but they can be modified to use any of the supported regions listed here:
CLI v3 Supported Regions

1. Login to AWS Web Console and select EC2.

[image: Login to AWS and then select EC2]

	Click on the orange “Launch Instance” button.

[image: Click on Launch Instance]

	Search for AMI.

	Enter the AMI name: ami-051ba52c157e4070c in the search box and return or enter.

[image: Search for AMI]

	Click on the Community AMI tab and then and click on the orange “Select” button.

[image: Choose Public AMI with CMAQ pre-installed]

Note

This Amazon Machine Image (AMI) was built using a C6a EC2 Instance, with default Ubuntu OS (Ubuntu OS, 22.04 LTS, amd64 jammy), with gcc compilers, OpenMPI, netCDF, I/O API, and CMAQv5.4.
Amazon EC2 C6a Instances
To create a VM using a different family of EC2 instances, you would need to choose the default Ubuntu OS and follow the Developer Guide to install the compilers and software for CMAQv5.4.

	Search for c6a.2xlarge Instance Type and select it.

Note, the screenshots show the c6a.2xlarge instance type being selected. If you were running a larger benchmark, you would want to select a larger sized instance such as a c6a.8xlarge or c6a.48xlarge.

[image: Select c6a.2xlarge instance type]

	Select key pair name or create a new key pair.

[image: Select key pair name or create new key pair]

	Use the default network settings.

[image: Use default network settings]

	Review the storage options. The AMI is preconfigured to use 500 GiB of gp3 as the root volume (not encrypted).

[image: Review Storage]

	Select the pull-down options for Advanced details.

[image: Select Advanced Details]

	Select checkbox for Request Spot Instances.

[image: Select Spot Instance Pricing]

	Scroll down until you see option to Specify CPU cores.

	Click the checkbox for “Specify CPU cores”.

	Then select 4 Cores, and 1 thread per core.

[image: Advanced Details turn off hyperthreading]

If you are building a VM using a different instance type, just select 1 thread per core and leave the number of cores to the value that is pre-set.
c6a.2xlarge (4 Cores), c6a.8xlarge (16 cores), c6a.48x large (96 cores).

	In the Summary Menu, select Launch Instance.

[image: Launch instance]

	Click on the link to the instance once it is successfully launched.

[image: Successfully launched link]

	Wait until the Status check has been completed and the Instance State is running

[image: Instance State running]

	Click on the instance link and copy the Public IP address to your clipboard.

[image: Instance IP address]

	You will use this Public IP address to login into the VM that you just created (c6a.2xlarge ec2 instance).

On your local computer, you will use the following command.

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@xx.xxx.xxx.xxx

 1.2. Create a VM using the AWS Command Line

1.2. Create a VM using the AWS Command Line

If you are not able to use the AWS Web Interface to create the VM from the public AMI in the previous section, then you can use the AWS Command Line (CLI).

	Install the AQS CLI on your local computer using the following instructions:
Install AWS CLI

	Create your key pair and security group
Create key pair and security group

	Verify that you can see the public AMI on the us-east-1 region.

aws ec2 describe-images --region us-east-1 --image-id ami-051ba52c157e4070c

Output:

{
 "Images": [
 {
 "Architecture": "x86_64",
 "CreationDate": "2023-07-05T14:10:42.000Z",
 "ImageId": "ami-051ba52c157e4070c",
 "ImageLocation": "440858712842/cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "ImageType": "machine",
 "Public": true,
 "OwnerId": "440858712842",
 "PlatformDetails": "Linux/UNIX",
 "UsageOperation": "RunInstances",
 "State": "available",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": true,
 "Iops": 16000,
 "SnapshotId": "snap-08789828f7ab945ed",
 "VolumeSize": 500,
 "VolumeType": "gp3",
 "Throughput": 1000,
 "Encrypted": false
 }
 },
 {
 "DeviceName": "/dev/sdb",
 "VirtualName": "ephemeral0"
 },
 {
 "DeviceName": "/dev/sdc",
 "VirtualName": "ephemeral1"
 }
],
 "Description": "[Copied ami-01605a204650ede2f from us-east-1] cmaqv5.4_c6a_48xlarge_gp3_IOPS_16000_throughput_1000",
 "EnaSupport": true,
 "Hypervisor": "xen",
 "Name": "cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "RootDeviceName": "/dev/sda1",
 "RootDeviceType": "ebs",
 "SriovNetSupport": "simple",
 "VirtualizationType": "hvm",
 "DeprecationTime": "2025-07-05T14:10:42.000Z"
 }
]
}

	Use q to exit out of the command line. Note, the AMI uses the default values of iops and throughput for the gp3 volume.

	To use the AWS CLI, you will need to have a key.pair that was created on an EC2 instance.

See also

Guide to obtaining AWS Key Pair

	To launch a Spot Instance with RunInstances API create the configuration file as described below:

cat <<EoF > ./runinstances-config.gp3.json
{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.2xlarge",
 "ImageId": "ami-051ba52c157e4070c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}
EoF

	Use the publically available AMI to launch a spot c6a.2xlarge EC2 instance using a gp3 volume with hyperthreading disabled. Specify the number of cores and set the number of threads per core to 1 to disable hyperthreading. Use the command line option to specify the number of cores to match the selected EC2 instance type, and to disable hyperthreading. Below is an example command.

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --dry-run --ebs-optimized --cpu-options CoreCount=4,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.json

Note:

	The size of instance determines the number of compute cores (CoreCount). In the example above the c6a.2xlarge EC2 instance contains 4 cores with hyperthreading turned off and is sized to run the tutorial benchmark case (i.e., –cpu-options CoreCount=XX, ThreadsPerCore=1). If you wish to try the benchmark with a larger VM you can edit the runinstances-config.gp3.json file to select a different version of c6a and then change the CoreCount to match:

c6a.2xlarge, CoreCount=4
c6a.8xlarge, CoreCount=16
c6a.48xlarge, CoreCount=96

	You will need to obtain a security group id from your IT administrator that allows ssh login access. If this is enabled by default, then you can remove the –security-group-ids launch-wizard-with-tcp-access.

	Launch-wizard-with-tcp-access needs to be replaced by your security group ID, and your-pem key needs to be replaced by the name of your-pem.pem key.

	Once you have verified that the command above works with the –dry-run option, rerun it after removing the –dry-run option as follows:

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --cpu-options CoreCount=4,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.json

	Use the q command to return to the cursor.

	Use the following command to obtain the public IP address of the machine. Also use this command to verify that it has switched from an initializing state to a running state.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep -A 3 PublicIpAddress

 1.3. Run CMAQv5.4 on c6a.2xlarge

1.3. Run CMAQv5.4 on c6a.2xlarge

In the last sections you created and logged into a VM (c6a.2xlarge EC2 instance) based on the public AMI. Here you will use this VM to run a benchmark case for CMAQ version 5.4.

	Obtain the IP address for the VM from AWS Web Console or from using the following AWS CLI command (same steps as the end of section 1.1 and 1.2):

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep PublicIpAddress

	Use the IP address and your key pair to login to the EC2 instance.

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@ip.address

	Login to the EC2 instance again, so that you have two windows logged into the machine.

ssh -Y -i ~/downloads/your-pem.pem ubuntu@your-ip-address

	Load the environment modules

module avail

module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

	Verify that the input data for the benchmark is available. The benchmark case (12US1_LISTOS) for this example is small with only 25 rows and 25 columns. The GRIDDESC file defines the modeling domain which has 12 km x 12km horizontal grid spacing and is centered over Long Island, New York and Connecticut.

ls -lrt /shared/data/12US1_LISTOS/*

-rw-rw-r-- 1 ubuntu ubuntu 207 Jun 6 20:05 /shared/data/12US1_LISTOS/GRIDDESC

/shared/data/12US1_LISTOS/emis:
total 28
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 cmv_c3
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 pt_oilgas
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 gridded
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 ptegu_nopfas
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 ptnonipm
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 smk_dates
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 ptnonipm_nopfas

/shared/data/12US1_LISTOS/met:
total 12
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 lightning
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 mcip
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 wrfout

/shared/data/12US1_LISTOS/icbc:
total 24976
-rw-rw-r-- 1 ubuntu ubuntu 21774044 Jun 6 20:05 ICON_v54_12km_Listos_profile_timeind.nc
-rw-rw-r-- 1 ubuntu ubuntu 109793 Jun 6 20:05 BCON_v54_12km_Listos_profile_timeind.nc.CO.txt
-rw-rw-r-- 1 ubuntu ubuntu 3683924 Jun 6 20:05 BCON_v54_12km_Listos_profile_timeind.nc
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 6 20:19 cb6r3_ae7_aq

/shared/data/12US1_LISTOS/surface:
total 2668
-rw-rw-r-- 1 ubuntu ubuntu 2199208 Jun 6 20:05 OCEAN_08_L3m_MC_CHL_chlor_a_12US1_Listos.nc3
-rw-rw-r-- 1 ubuntu ubuntu 363296 Jun 6 20:05 OCEAN_08_L3m_MC_CHL_chlor_a_12US1.nc
-rw-rw-r-- 1 ubuntu ubuntu 145796 Jun 6 20:05 GRIDMASK_STATES_12US1_m3clple_12listos.ncf
-rw-rw-r-- 1 ubuntu ubuntu 16452 Jun 6 20:05 12US1_surf_m3clple_12listos.ncf

cat /shared/data/12US1_LISTOS/GRIDDESC

GRIDDESC

'2018_12Listos'
'LamCon_40N_97W' 1812000.000 240000.000 12000.000 12000.000 25 25 1

	Run the CMAQv5.4 12US1_LISTOS benchmark case for 3 days on 4 processors. There is no job scheduler (such as SLURM) installed on the AMI. Submit the job using the command line:

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
./run_cctm_2018_12US1_listos.csh | & tee ./run_cctm_2018_12US1_listos.c6a.2xlarge.log

	Use HTOP to view performance.

htop

Output:

[image: Screenshot of HTOP with hyperthreading off]

	After the benchmark is complete, use the following command to view the timing results.

tail -n 20 run_cctm_2018_12US1_listos.c6a.2xlarge.log

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 4
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 165.5
02 2018-08-06 165.8
03 2018-08-07 169.5
 Total Time = 500.80
 Avg. Time = 166.93

	Use lscpu to view number of cores. Confirm that there are 4 cores on the c6a.2xlarge ec2 instance that was created with hyperthreading turned off (1 thread per core). If the EC2 instance is configured to use 1 thread per core in the advanced setting, then it will have 4 cores. For MPI or parallel applications such as CMAQ it is best to turn off hyperthreading.

lscpu

Output:

lscpu
Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 48 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 4
 On-line CPU(s) list: 0-3
Vendor ID: AuthenticAMD
 Model name: AMD EPYC 7R13 Processor
 CPU family: 25
 Model: 1
 Thread(s) per core: 1
 Core(s) per socket: 4
 Socket(s): 1
 Stepping: 1
 BogoMIPS: 5299.98
Virtualization features:
 Hypervisor vendor: KVM
 Virtualization type: full
Caches (sum of all):
 L1d: 128 KiB (4 instances)
 L1i: 128 KiB (4 instances)
 L2: 2 MiB (4 instances)
 L3: 16 MiB (1 instance)
NUMA:
 NUMA node(s): 1
 NUMA node0 CPU(s): 0-3

Note

If the run time seems to take a while at the beginning of each day, then you may need to resubmit the job. There is an initial latency issue when storage blocks are initially pulled down from Amazon S3 and written to the volume. For the 12US1 or other large benchmarks with larger input file sizes, this latency or delay is longer.

You will need to use a larger EC2 instance to run the larger ‘12US1’ benchmark, and also follow instructions available on how to initialize the volume prior to running:
Initialize EBS Volume.

	Once you have successfully run the benchmark, terminate the instance. Terminate the c6a.2xlarge either thru the Web Console or using the CLI. Find the InstanceID using the following command on your local machine.

aws ec2 describe-instances --region=us-east-1 | grep InstanceId

Output

i-xxxx

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

	Verify that the instance is being shut down.

aws ec2 describe-instances --region=us-east-1

	The cost to run the simulation per day is a factor of the simulation time and the cost per hour of the instance type (c6a.2xlarge on-demand cost is .306)

166.93 seconds x 1 min/60seconds x 1 hour/60 min = .0459 hours

.0459 hours x $.306/hour = $.014 per simulation day

 2. Create a Parallel Cluster and run CMAQv5.4

2. Create a Parallel Cluster and run CMAQv5.4

Why might I need to use ParallelCluster?

The AWS ParallelCluster may be configured to be the equivalent of a High Performance Computing (HPC) environment, including using job schedulers such as Slurm, running on multiple nodes using code compiled with Message Passing Interface (MPI), and reading and writing output to a high performance, low latency shared disk. The advantage of using the AWS ParallelCluster command line interface is that the compute nodes can be easily scaled up or down to match the compute requirements of a given simulation. HPC compute nodes such as hpc6a or hpc7g are available in a limited set of regions at significantly discounted pricing (60% below on demand costs). Users can also attempt to reduce costs by using Spot instances rather than On-Demand for the compute nodes. ParallelCluster also supports submitting multiple jobs to the job submission queue.

Our goal is make this user guide to running CMAQ on a ParallelCluster as helpful and user-friendly as possible. Any feedback is both welcome and appreciated.

	2.1. Build a Demo ParallelCluster
	2.1.1. Install Parallel Cluster AWS CLI 3.0

	2.1.2. Configure a Demo Cluster

	2.1.3. Create a Demo Cluster

	2.1.4. Login to the ParallelCluster

	2.1.5. Exit the cluster

	2.1.6. Delete the Demo Cluster

	2.2. Use ParallelCluster with Software and Data pre-installed on hpc7g.16xlarge
	2.2.1. Configure the ParallelCluster

	2.2.2. Create the hpc7g pcluster

	2.3. Run CMAQ on hpc7g.16xlarge
	2.3.1. Login to cluster

	2.3.2. Preloading the files

	2.3.3. Run the 12US1 Domain on 128 cores

	2.3.4. Submit a job to run on 192 pes, 3x64 nodes

	2.3.5. Submit a job to run on 320 pes running on 5 nodes

	2.3.6. Submit a job to run on 128 cores with 32 cores per node.

	2.4. Run DESID CMAQ on hpc7g.16xlarge
	2.4.1. Run CMAQ for DESID
	Edit the DESID Namelist

	Edit runscript to use DESID Namelist

	Run CMAQ using DESID

	Review Log file from DESID run

	2.5. Use ParallelCluster with Software and Data pre-installed for c6a.48xlarge
	2.5.1. Create CMAQ Cluster using SPOT pricing

	2.5.2. Create the c6a.48xlarge pcluster

	2.6. Run CMAQ on c6a.48xlarge
	2.6.1. Login to cluster

	2.6.2. Verify that the input data is imported to /fsx from the S3 Bucket

	2.6.3. Run the 12US1 Domain on 192 pes

	2.6.4. Submit a request for a 96 pe job (1 x 96 pe) or 1 nodes instead of 2 nodes

	2.6.5. Submit a job to run on 288 pes, 3x96 nodes

 2.1. Build a Demo ParallelCluster

2.1. Build a Demo ParallelCluster

Step by Step Instructions to Build a Demo ParallelCluster.

Establish Identity and Permissions

AWS Identity and Access Management Roles
Requires the user to have AWS Identity and Access Management roles in AWS ParallelCluster

See also

AWS Identity and Access Management roles in AWS ParallelCluster

AWS ParallelCluster uses multiple AWS services to deploy and operate a cluster. See the complete list in the AWS Services used in AWS ParallelCluster section.
It appears you can create the demo cluster, and even the intermediate or advanced cluster, but you can’t submit a slurm job and have it provision compute nodes until you have the IAM Policies set for your account. This likely requires the system administrator who has permissions to access the AWS Web Interface with root access to add these policies and then to attach them to each user account.

Use the AWS Web Interface to add a policy called AWSEC2SpotServiceRolePolicy to the account prior to running a job that uses spot pricing on the ParallelCluster.

2.1.1. Install Parallel Cluster AWS CLI 3.0

Use Parallel Cluster AWS Command Line Interface (CLI) v3.0 to configure and launch a demo cluster

Requires the user to have a key.pair that was created on an ec2.instance

See also

Guide to obtaining AWS Key Pair

Install AWS ParallelCluster Command Line Interface on your local machine

Create a virtual environment on a linux machine to install aws-parallel cluster

See also

Guide to install AWS CL3 in Virtual Environment”

python3 -m virtualenv ~/apc-ve
source ~/apc-ve/bin/activate
python --version
python3 -m pip install --upgrade aws-parallelcluster
pcluster version

Install node.js

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.38.0/install.sh
chmod ug+x ~/.nvm/nvm.sh
source ~/.nvm/nvm.sh
nvm install node
node --version

Verify that AWS ParallelCluster is installed on local machine

Run pcluster version.

pcluster version

Output:

{
"version": "3.1.2"
}

Note

If you start a new terminal window, you need to re-activate the virtual environment using the following commands:

source ~/apc-ve/bin/activate
source ~/.nvm/nvm.sh

Verify that the parallel cluster is working using:

pcluster version

Configure AWS Command line credentials on your local machine

See also

Link to Instructions for Setting up AWS Credential Instructions

aws configure

2.1.2. Configure a Demo Cluster

To create a parallel cluster, a yaml file needs to be created that is unique to your account.

An example of the yaml file contents is described in the following Diagram:

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a t2.micro head node and t2.micro compute nodes

[image: t2.micro yaml configuration]

See also

Cluster Configuration File

Create a yaml configuration file for the cluster following these instructions

See also

Link to ParallelCluster Configure Instructions

pcluster configure --config new-hello-world.yaml

Input the following answers at each prompt:

	Allowed values for AWS Region ID: us-east-1

	Allowed values for EC2 Key Pair Name: choose your key pair

	Allowed values for Scheduler: slurm

	Allowed values for Operating System: ubuntu2004

	Head node instance type: t2.micro

	Number of queues: 1

	Name of queue 1: queue1

	Number of compute resources for queue1 [1]: 1

	Compute instance type for compute resource 1 in queue1: t2.micro

	Maximum instance count [10]: 10

	Automate VPC creation?: y

	Allowed values for Availability Zone: 1

	Allowed values for Network Configuration: 2. Head node and compute fleet in the same public subnet

Beginning VPC creation. Please do not leave the terminal until the creation is finalized

Note

The choice of operating system (specified during the yaml creation, or in an existing yaml file) determines what modules and gcc compiler versions are available.

	Centos7 has an older gcc version 4

	Ubuntu2004 has gcc version 9+

	Alinux or Amazon Linux/Red Hat Linux (haven’t tried)

Examine the yaml file

cat new-hello-world.yaml

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: t2.micro
 Networking:
 SubnetId: subnet-xx-xx-xx <<< unique to your account
 Ssh:
 KeyName: your-key <<< unique to your account
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 ComputeResources:
 - Name: t2micro
 InstanceType: t2.micro
 MinCount: 0
 MaxCount: 10
 Networking:
 SubnetIds:
 - subnet-xx-xx-xx <<< unique to your account

Note

The above yaml file is the very simplest form available. If you upgrade the compute node to using a faster compute instance, then you will need to add additional configuration options (networking, elastic fabric adapter) to the yaml file. These modifications will be highlighted in the yaml figures provided in the tutorial.

The key pair and Subnetid in the yaml file are unique to your account. To create the AWS Intermediate ParallelCluster, the key pair and subnet ID from the new-hello-world.yaml file that you created using your account will need to be transferred to the Yaml files that will be used to create the Intermediate ParallelCluster in the next section of the tutorial. You will need to edit these yaml files to use the key pair and your Subnetid that are valid for your AWS Account.

2.1.3. Create a Demo Cluster

pcluster create-cluster --cluster-configuration new-hello-world.yaml --cluster-name hello-pcluster --region us-east-1

Check on the status of the cluster

pcluster describe-cluster --region=us-east-1 --cluster-name hello-pcluster

List available clusters

pcluster list-clusters --region=us-east-1

Check on status of cluster again

pcluster describe-cluster --region=us-east-1 --cluster-name hello-pcluster

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

While the cluster has been created, only the t2.micro head node is running. Before any jobs can be submitted to the slurm queue, the compute nodes need to be started.

Note

The compute nodes are not “provisioned” or “created” at this time (so they do not begin to incur costs). The compute nodes are only provisioned when a slurm job is scheduled. After a slurm job is completed, then the compute nodes will be terminated after 5 minutes of idletime.

2.1.4. Login to the ParallelCluster

Note

replace the your-key.pem key pair with your key pair
you will need to change the permissions on your key pair so to be read only by owner.

cd ~
chmod 400 your-key.pem

Example:
pcluster ssh -v -Y -i ~/your-key.pem –cluster-name hello-pcluster

pcluster ssh -v -Y -i ~/[your-key-pair] --cluster-name hello-pcluster

login prompt should look something like (this will depend on what OS was chosen in the yaml file).

[ip-xx-x-xx-xxx pcluster-cmaq]

Check what modules are available on the ParallelCluster

module avail

Check what version of the compiler is available

gcc --version

Need a minimum of gcc 8+ for CMAQ

Check what version of openmpi is available

mpirun --version

Need a minimum openmpi version 4.0.1 for CMAQ

Verify that Slurm is available (if slurm is not available, then you may need to try a different OS)

which sbatch

Do not install sofware on this demo cluster

the t2.micro head node is too small

Save the key pair and SubnetId from this new-hello-world.yaml to use in the yaml for the Intermediate Tutorial

2.1.5. Exit the cluster

exit

2.1.6. Delete the Demo Cluster

pcluster delete-cluster --cluster-name hello-pcluster --region us-east-1

See also

pcluster --help

 2.2. Use ParallelCluster with Software and Data pre-installed on hpc7g.16xlarge

2.2. Use ParallelCluster with Software and Data pre-installed on hpc7g.16xlarge

Step by step instructions to configuring and running a ParallelCluster for the CMAQ 12US1 benchmark

Notice

The CMAQ libraries were installed using the gcc compiler on c6g.large.

2.2.1. Configure the ParallelCluster

Use an existing yaml file from the git repo to create a ParallelCluster

cd /your/local/machine/install/path/

Use a configuration file from the github repo that was cloned to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq/yaml

Edit the hpc7g.16xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

vi hpc7g.16xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

Note

	the hpc7g.16xlarge*.yaml is configured to use ONDEMAND instance pricing for the compute nodes.

	the hpc7g.16xlarge*.yaml is configured to the the hpc7g.16xlarge as the compute node for the compute-resource-1 queue, with up to 12 compute nodes, specified by MaxCount: 12.

	the hpc7g.16xlarge*.yaml is configured to the the hpc7g.8xlarge as the compute node for the compute-resource-1 queue, with up to 7 compute nodes.

	the hpc7g.16xlarge*.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (128 virtual cpus reduced to 64 cpus)

	the hpc7g.16xlarge*.yaml is configured to enable the setting of a placement group to allow low inter-node latency

	the hpc7g.16xlarge*.yaml is configured to enables the elastic fabric adapter

	given this yaml configuration, the maximum number of PEs that could be used to run CMAQ is 64 cpus x 12 = 768, the max settings for NPCOL, NPROW is NPCOL = 24, NPROW = 32 or NPCOL=32, NPROW=24 in the CMAQ run script. Note: CMAQ will need to be benchmarked using the 12US1 to determine the optimal number of compute nodes to use.

Replace the key pair and subnet ID in the hpc7g.16xlarge*.yaml file with the values created when you configured the demo cluster

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c7g.large
 Networking:
 SubnetId: subnet-xx-xx-xx << replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your_key << replace
 LocalStorage:
 RootVolume:
 Encrypted: true
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 CapacityType: ONDEMAND
 Networking:
 SubnetIds:
 - subnet-xx-xx-x x << replace
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: hpc7g.16xlarge
 MinCount: 0
 MaxCount: 12
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
 - Name: compute-resource-2
 InstanceType: hpc7g.8xlarge
 MinCount: 0
 MaxCount: 7
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 EbsSettings:
 Encrypted: true
 SnapshotId: snap-0049a7c309f238500
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://cmas-cmaq/

The Yaml file for the hpc7g.16xlarge contains the settings as shown in the following diagram.

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c6g.large head node and hpc7g.16xlarge compute nodes using ONDEMAND pricing
[image: hpc7g.16xlarge yaml configuration]

(to do!)

2.2.2. Create the hpc7g pcluster

Note, this yaml file is configured to have 12 nodes of the hpc7g.16xlarge (64 pe per node) and 7 nodes of the hpc7g.8xlarge (32 pe per node).

pcluster create-cluster --cluster-configuration hpc7g.16xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml --cluster-name cmaq --region us-east-1

Check on status of cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

If the cluster fails to start, use the following command to check for an error

pcluster get-cluster-stack-events --cluster-name cmaq --region us-east-1 --query 'events[?resourceStatus==CREATE_FAILED]'

 2.3. Run CMAQ on hpc7g.16xlarge

2.3. Run CMAQ on hpc7g.16xlarge

2.3.1. Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-1 --cluster-name cmaq

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena
lspci

Verify the gcc compiler version is greater than 8.0

gcc --version

output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Change default shell to .tcsh

sudo usermod -s /bin/tcsh ubuntu

Copy file to .cshrc

cp /shared/pcluster-cmaq/install/dot.cshrc.pcluster ~/.cshrc

Note that the .cshrc to add custom module path

module use --append /shared/build/Modules/modulefiles

Change shell to csh

logout and log back in to switch to the default shell

Use module list and then module load to load the libraries

module load netcdf-4.8.1/gcc-9.5 ioapi-3.2/gcc-9.5-netcdf

Description of the hpc7g.16xlarge instance:

Instance Size 	Physical Cores 	Memory (GiB) 	Instance Storage 	EFA Network Bandwidth (Gbps) 	Network Bandwidth (Gbps)*
hpc7g.16xlarge 64 128 EBS-only 200 25

Verify that you have an updated set of run scripts from the pcluster-cmaq repo

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
ls -lrt run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x64.ncclassic.csh

If they don’t exist or are not identical, then copy the run scripts from the repo

cd /shared/pcluster-cmaq
git pull
cp /shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/run_cctm* /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Verify that the input data is imported to /fsx from the S3 Bucket

cd /fsx/

2.3.2. Preloading the files

Amazon FSx copies data from your Amazon S3 data repository when a file is first accessed.
CMAQ is sensitive to latencies, so it is best to preload contents of individual files or directories using the following command:

nohup find /fsx/ -type f -print0 | xargs -0 -n 1 sudo lfs hsm_restore &

Create a directory that specifies the full path that the run scripts are expecting.

mkdir -p /fsx/data/CMAQ_Modeling_Platform_2018/

Link the 2018_12US1 directoy

cd /fsx/data/CMAQ_Modeling_Platform_2018/
ln -s /fsx/CMAQv5.4_2018_12US1_Benchmark_2Day_Input/2018_12US1/ .

Link the 12LISTOS_Training data

cd /fsx/data/
ln -s /fsx/CMAQv5.4_2018_12LISTOS_Benchmark_3Day_Input/12LISTOS_Training ./12US1_LISTOS

Link the 2018_12NE3 Benchmark data

ln -s /fsx/CMAQv5.4_2018_12NE3_Benchmark_2Day_Input/2018_12NE3 .

netCDF-3 classic input files are used

The *.nc4 compressed netCDF4 files on /fsx input directory were converted to netCDF classic (nc3) files

Create the output directory`

mkdir -p /fsx/data/output

Note, that the 12US1 Domain will not run on 64 cores using the hpc7g.16xlarge, as it doesn’t have enough memory per node.
It is possible to run on 64 cores using the hpc7g.8xlarge using 2 x 32 cores per node (as there is more memory per core).

2.3.3. Run the 12US1 Domain on 128 cores

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/
sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x64.ncclassic.csh

Note, it will take about 3-5 minutes for the compute notes to start up. This is reflected in the Status (ST) of CF (configuring)

Check the status in the queue

squeue -u ubuntu`

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu CF 2 queue1-dy-compute-resource-1-[1-2]

After 5 minutes the status will change once the compute nodes have been created and the job is running

squeue -u ubuntu

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu R 0:58 2 queue1-dy-compute-resource-1-[1-2]

Check on the status of the cluster using CloudWatch (optional)

Cloudwatch Dashboard

Monitoring Dashboard for ParallelCluster

Check the timings while the job is still running using the following command

cd /fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_2x64_classic/

grep 'Processing completed' CTM_LOG_001*

Output:

 Processing completed... 7.4020 seconds
 Processing completed... 5.5893 seconds
 Processing completed... 5.5588 seconds
 Processing completed... 5.5470 seconds
 Processing completed... 5.5449 seconds
 Processing completed... 5.5105 seconds
 Processing completed... 5.5182 seconds
 Processing completed... 5.5343 seconds
 Processing completed... 5.5482 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.128.8x16pe.2day.20171222start.2x64.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 128
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 2074.2
02 2017-12-23 2298.9
 Total Time = 4373.10
 Avg. Time = 2186.55

Check whether the scheduler thinks there are cpus or vcpus

sinfo -lN

Output:

Thu Jun 29 22:31:30 2023
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
queue1-dy-compute-resource-1-1 1 queue1* allocated 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-2 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, Scheduler health che
queue1-dy-compute-resource-1-3 1 queue1* allocated 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-4 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-5 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-6 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-7 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-8 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-9 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-10 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-11 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-12 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none

When the jobs are both submitted to the queue they will be dispatched to different compute nodes.

squeue

output

Submitted batch job 4
ip-10-0-1-243:/shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu CF 0:01 1 queue1-dy-compute-resource-1-3
 3 queue1 CMAQ ubuntu R 21:28 2 queue1-dy-compute-resource-1-[1-2]

Information about the error obtained when running on 1 node using hpc7g.16xlarge

1 pe job is dying, running out of memory, which means that the 12US1 case takes more than 128 GB of memory.

[image: top showing memory depleted just before job dies]

2 GB Memory per core for hpc7g.16xlarge

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.8x8pe.2day.20171222start.1x64.log

Output

a non-zero exit code. Per user-direction, the job has been aborted.
--
--
mpirun noticed that process rank 12 with PID 6866 on node queue1-dy-compute-resource-1-1 exited on signal 9 (Killed).
--
11.857u 17.117s 1:24.37 34.3%	0+0k 382640+17960io 4860pf+0w

**
** Runscript Detected an Error: CGRID file was not written. **
** This indicates that CMAQ was interrupted or an issue **
** exists with writing output. The runscript will now **
** abort rather than proceeding to subsequent days. **
**

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 1
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 64
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 12
 Total Time = 12.00
 Avg. Time = 12.00

tail -n 30 CTM_LOG_012.v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_1x64_classic_20171222

 File "OMI" opened for input on unit: 92
 /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/BLD_CCTM_v54+_gcc/OMI_1979_to_2019.dat

OMI Ozone column data has Lat by Lon Resolution: 17X 17
 Total column ozone will be interpolated to day 0:00:00 Dec. 22, 2017
 from data available on the OMI input file

Switched to running on more than one node c7g.8xlarge, and CMAQv5.4 ran successfully as it had access to more memory.

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.256.16x16pe.2day.20171222start.4x64.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 256
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1347.3
02 2017-12-23 1501.4
 Total Time = 2848.70
 Avg. Time = 1424.35

2.3.4. Submit a job to run on 192 pes, 3x64 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x64.ncclassic.csh

Verify that it is running on 3 nodes

sbatch

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 4:29 3 queue1-dy-compute-resource-1-[1-3]

Check the log for how quickly the job is running

`grep ‘Processing completed’

Output:

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.192.12x16pe.2day.20171222start.3x64.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 192
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1617.1
02 2017-12-23 1755.3
 Total Time = 3372.40
 Avg. Time = 1686.20

2.3.5. Submit a job to run on 320 pes running on 5 nodes

Output

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 320
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1177.0
02 2017-12-23 1266.6
 Total Time = 2443.60
 Avg. Time = 1221.80

2.3.6. Submit a job to run on 128 cores with 32 cores per node.

Running on 4x32 cores using the hpc7g.8xlarge instances

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.4x32.ncclassic.csh -w queue1-dy-compute-resource-2[1-4]

 2.4. Run DESID CMAQ on hpc7g.16xlarge

2.4. Run DESID CMAQ on hpc7g.16xlarge

Note

This content was transferred from the CMAQ on AWS Workshop, and has not been fully tested.

2.4.1. Run CMAQ for DESID

Edit the DESID Namelist

	Edit the CMAQ DESID Chemical Species Control File

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/BLD_CCTM_v54+_gcc
cp CMAQ_Control_DESID_cb6r5_ae7_aq.nml CMAQ_Control_DESID_cb6r5_ae7_aq_RED_EGU_POINT_NY.nml
vi CMAQ_Control_DESID_cb6r5_ae7_aq_RED_EGU_POINT_NY.nml

	Add the following lines to the bottom of the file according to the DESID Tutorial Instructions

https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/Tutorials/CMAQ_UG_tutorial_emissions.md#scale_stream
(place the line before the / file marker)

 ! PT_EGU Emissions Scaling reduce PT_EGU emissions in New York by 25%. Note, to reduce the emissions by 25% we use DESID to multiply what had been 100% emissions by .75, so that the resulting emissions is reduced by 25%.
 'NY' , 'PT_EGU' ,'All' ,'All' ,'All' ,.75 ,'UNIT','o',

	Activate DESID Diagnostics

Create a DESID Control File and edit it to define NY as a region, and activate DESID emissions diagnostics
Define NY as a region in the DESID Region Definitions

cp CMAQ_Control_DESID.nml CMAQ_Control_DESID_RED_EGU_POINT_NY.nml
vi CMAQ_Control_DESID_RED_EGU_POINT_NY.nml &

Modify the following section to use the NY region that is specified in the CMAQ_MASKS file, note the CMAQ_MASKS file is defined in the DESID Run script.

&Desid_RegionDef
 Desid_Reg_nml =
 ! Region Label | File_Label | Variable on File
 ! 'EVERYWHERE' ,'N/A' ,'N/A',
 'NY' ,'CMAQ_MASKS' ,'NY',
 !<Example> 'ALL' ,'ISAM_REGIONS','ALL',
/

	Create two stream family definitions, one that includes all point source emissions, and the second that only contains PT_EGU

!--!
! Emissions Scaling Family Definitions !
! This component includes definitions for families of emission streams and !
! region combinations. !
!--!
&Desid_StreamFamVars
 Desid_N_Stream_Fams = 2 ! Exact number of stream family definitions
 Desid_Max_Stream_Fam_Members = 20 ! Larger than the number of streams on all
 ! family definitions
/

&Desid_StreamFam
! For emission streams available in several run scripts under CCTM/scripts

 StreamFamilyName(1) = 'PT_SOURCES'
 StreamFamilyMembers(1,1:8)= 'PT_NONEGU','PT_OTHER', 'PT_AGFIRES', 'PT_FIRES', 'PT_RXFIRES', 'PT_OTHFIRES', 'PT_OILGAS','PT_CMV_C1C2'

 StreamFamilyName(2) = 'PT_EGUS'
 StreamFamilyMembers(2,1:1)= 'PT_EGU'
&Desid_Diag

	activate DESID diagnostics to report the reduction in PT_EGU emissions.

Note, if you define only one diagnostic rule, you must comment out all other rules.

&Desid_DiagVars
 Desid_N_Diag_Rules = 1 ! Exact Number of Diagnostic Rules Below
 Desid_Max_Diag_Streams=20 ! Maximum number of species variables on all rules
 ! below (do not count expansions)
 Desid_Max_Diag_Spec = 80 ! Maximum number of species variables on all rules
 ! below (do not count expansions)
/

! Create a diagnostic of the sum of the components of the PT_SOURCES
 ! family (defined in the stream family section). This file will be column sums
 ! and will include all the emitted species as long as they appear on at least
 ! one of the streams within PT_SOURCES.

 Desid_Diag_Streams_Nml(1,:)= 'PT_EGUS'
 Desid_Diag_Fmt_Nml(1) = 'COLSUM'
 Desid_Diag_Spec_Nml(1,:) = 'ALL'

	Verify that the settings are correct by comparing to the version in the github repo directory

diff CMAQ_Control_DESID_RED_EGU_POINT_NY.nml /shared/pcluster-cmaq/qa_scripts/workshop/CMAQ_Control_DESID_RED_EGU_POINT_NY.nml

	Copy the Run script and edit it to use the DESID namelist files

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/BLD_CCTM_v54+_gcc
cp run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x64.ncclassic.csh run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x64.ncclassic_DESID_RED_NY.csh

Edit runscript to use DESID Namelist

	Copy the Run script and edit it to use the DESID namelist files

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/BLD_CCTM_v54+_gcc
cp run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x64.ncclassic.csh run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x64.ncclassic_DESID_RED_NY.csh

	Change APPL to a new name

set APPL = 12US1_DESID_REDUCE #> Application Name (e.g. Gridname)

	Verify the following emission stream names match the names used in the DESID namelist.

grep STK_EMIS_LAB_00 ../run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x64.ncclassic.DESID_RED_NY.csh

Output

setenv STK_EMIS_LAB_001 PT_NONEGU
setenv STK_EMIS_LAB_002 PT_EGU
setenv STK_EMIS_LAB_003 PT_OTHER
setenv STK_EMIS_LAB_004 PT_AGFIRES
setenv STK_EMIS_LAB_005 PT_FIRES
setenv STK_EMIS_LAB_006 PT_RXFIRES
setenv STK_EMIS_LAB_007 PT_OTHFIRES
setenv STK_EMIS_LAB_008 PT_OILGAS
setenv STK_EMIS_LAB_009 PT_CMV_C1C2

	Compare the above settings to those used in the Emission Stream Family defined in the DESID Namelist.

grep -A 2 -B 2 StreamFamilyMembers CMAQ_Control_DESID_RED_EGU_POINT_NY.nml

Output

 StreamFamilyName(1) = 'PT_SOURCES'
 StreamFamilyMembers(1,1:4)= 'PT_NONEGU','PT_OTHER', 'PT_AGFIRES', 'PT_FIRES', 'PT_RXFIRES', 'PT_OTHFIRES', 'PT_OILGAS','PT_CMV_C1C2'

 StreamFamilyName(2) = 'PT_EGUS'
 StreamFamilyMembers(2,1:1)= 'PT_EGU'

Note

CMAQ won’t crash if the stream name in CMAQ_Control_DESID__RED_EGU_POINT_NY.nml was set incorrectly. CMAQ just ignores the incorrect stream name and won’t apply scaling.

 2.5. Use ParallelCluster with Software and Data pre-installed for c6a.48xlarge

2.5. Use ParallelCluster with Software and Data pre-installed for c6a.48xlarge

Step by step instructions to configuring and running a ParallelCluster for the CMAQ 12US1 benchmark

Notice

The CMAQ libraries were installed using the gcc compiler on c6a.large.

2.5.1. Create CMAQ Cluster using SPOT pricing

Use an existing yaml file from the git repo to create a ParallelCluster

cd /your/local/machine/install/path/

Use a configuration file from the github repo that was cloned to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

Edit the c6a.large-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

cd pcluster-cmaq/yaml

vi c6a.large-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

Note

	the c6a.large-48xlarge*.yaml is configured to use SPOT instance pricing for the compute nodes.

	the c6a.large-48xlarge*.yaml is configured to the the c6a-48xlarge as the compute node, with up to 10 compute nodes, specified by MaxCount: 10.

	the c6a.large-48xlarge*.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (192 virtual cpus reduced to 96 cpus)

	the c6a.large-48xlarge*.yaml is configured to enable the setting of a placement group to allow low inter-node latency

	the c6a.large-48xlarge*.yaml is configured to enables the elastic fabric adapter

	given this yaml configuration, the maximum number of PEs that could be used to run CMAQ is 96 cpus x 10 = 960, the max settings for NPCOL, NPROW is NPCOL = 24, NPROW = 40 or NPCOL=40, NPROW=24 in the CMAQ run script. Note: CMAQ does not scale well beyond 2-3 compute nodes.

Replace the key pair and subnet ID in the c6a.large-48xlarge*.yaml file with the values created when you configured the demo cluster

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c6a.large
 Networking:
 SubnetId: subnet-xx-xx-xx << replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your_key << replace
 LocalStorage:
 RootVolume:
 Encrypted: true
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 CapacityType: SPOT
 Networking:
 SubnetIds:
 - subnet-xx-xx-x x << replace
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: c6a.48xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 EbsSettings:
 Encrypted: false
 SnapshotId: snap-05a36eeec1f5267bd
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://cmas-cmaq/

The Yaml file for the c6a.large-48xlarge contains the settings as shown in the following diagram.

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c6a.large head node and c6a.48xlarge compute nodes using SPOT pricing
[image: c6a-48xlarge yaml configuration]

(to do!)

2.5.2. Create the c6a.48xlarge pcluster

pcluster create-cluster --cluster-configuration c6a.large-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml --cluster-name cmaq --region us-east-1

Check on status of cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

If the cluster fails to start, use the following command to check for an error

pcluster get-cluster-stack-events --cluster-name cmaq --region us-east-1 --query 'events[?resourceStatus==CREATE_FAILED]'

Proceed to the next chapter to login and run CMAQv5.4 on the Parallel Cluster.

 2.6. Run CMAQ on c6a.48xlarge

2.6. Run CMAQ on c6a.48xlarge

2.6.1. Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-1 --cluster-name cmaq

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Change default shell to .tcsh

sudo usermod -s /bin/tcsh ubuntu

Copy file to .cshrc

cp /shared/pcluster-cmaq/install/dot.cshrc.pcluster ~/.cshrc

logout and log back in to activate default tcsh shell

Check what modules are available on the cluster

module avail

Load the openmpi module

module load openmpi

Load the Libfabric module

module load libfabric-aws

Verify the gcc compiler version is greater than 8.0

gcc --version

output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See also

Link to the AWS Enhanced Networking Adapter Documentation

See also

ParallelCluster User Manual

Verify that you have an updated set of run scripts from the pcluster-cmaq repo

cd /shared/pcluster-cmaq/run_scripts/cmaqv54+/

ls -lrt run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh

diff run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh /shared/pcluster-cmaq/run_scripts/cmaqv54+/

If they don’t exist or are not identical, then copy the run scripts from the repo

cp /shared/pcluster-cmaq/run_scripts/cmaqv54+/run_cctm* /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

2.6.2. Verify that the input data is imported to /fsx from the S3 Bucket

cd /fsx/
ls */*

Preloading the files

Amazon FSx copies data from your Amazon S3 data repository when a file is first accessed.
CMAQ is sensitive to latencies, so it is best to preload contents of individual files or directories using the following command:

nohup find /fsx/ -type f -print0 | xargs -0 -n 1 sudo lfs hsm_restore &

Create a directory that specifies the full path that the run scripts are expecting.

mkdir -p /fsx/data/CMAQ_Modeling_Platform_2018/

Link the 2018_12US1 directoy

cd /fsx/data/CMAQ_Modeling_Platform_2018/

ln -s /fsx/CMAQv5.4_2018_12US1_Benchmark_2Day_Input/2018_12US1/ .

Link the 12LISTOS_Training data

cd /fsx/data/

ln -s /fsx/CMAQv5.4_2018_12LISTOS_Benchmark_3Day_Input/12LISTOS_Training ./12US1_LISTOS

Link the 2018_12NE3 Benchmark data

ln -s /fsx/CMAQv5.4_2018_12NE3_Benchmark_2Day_Input/2018_12NE3 .

netCDF-3 classic input files are used

The *.nc4 compressed netCDF4 files on /fsx input directory were converted to netCDF classic (nc3) files

Create the output directory`

mkdir -p /fsx/data/output

2.6.3. Run the 12US1 Domain on 192 pes

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh

Note, it will take about 3-5 minutes for the compute notes to start up. This is reflected in the Status (ST) of CF (configuring)

Check the status in the queue

squeue -u ubuntu

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu CF 2 queue1-dy-compute-resource-1-[1-2]

After 5 minutes the status will change once the compute nodes have been created and the job is running

squeue -u ubuntu

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu R 0:58 2 queue1-dy-compute-resource-1-[1-2]

If you get the following message, then you likely need to upgrade the Parallel Cluster to using OnDemand Compute Nodes instead of SPOT instances.

ubuntu@ip-10-0-1-70:/shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu PD 0:00 2 (Nodes required for job are DOWN, DRAINED or reserved for jobs in higher priority partitions)

If you need to update cluster to use ONDEMAND instead of SPOT instances

Stop Compute Nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status STOP_REQUESTED

Upgrade compute nodes to ONDEMAND

 pcluster update-cluster --region us-east-1 --cluster-name cmaq --cluster-configuration c6a.large-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import_ondemand.yaml

Restart the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Verify compute nodes have started:

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Relogin to the cluster

pcluster ssh -v -Y -i ~/cmas.pem --region=us-east-1 --cluster-name cmaq

Resubmit the job to the queue

The 192 pe job should take 62 minutes to run (31 minutes per day)

Check on the status of the cluster using CloudWatch (optional)

Cloudwatch Dashboard

Monitoring Dashboard for ParallelCluster

Check the timings while the job is still running using the following command

cd /fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_2x96_classic/

grep 'Processing completed' CTM_LOG_001*

Output:

 Processing completed... 6.3736 seconds
 Processing completed... 5.0755 seconds
 Processing completed... 5.1098 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.192.16x12pe.2day.20171222start.2x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 192
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1853.4
02 2017-12-23 2035.1
 Total Time = 3888.50
 Avg. Time = 1944.25

2.6.4. Submit a request for a 96 pe job (1 x 96 pe) or 1 nodes instead of 2 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x96.ncclassic.csh

Check on the status in the queue

squeue -u ubuntu

Note, it takes about 5 minutes for the compute nodes to be initialized, once the job is running the ST or status will change from CF (configure) to R

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu R 7:20 1 queue1-dy-compute-resource-1-3

Check the status of the run

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.1x96.log

The 96 pe job should take 104 minutes to run (52 minutes per day)
Note, this is a different domain (12US1 versus 12US2) than what was used for the HPC6a.48xlarge Benchmark runs, so the timings are not directly comparible.
The 12US1 domain is larger than 12US2.

‘12US1’
‘LAM_40N97W’ -2556000. -1728000. 12000. 12000. 459 299 1

Check whether the scheduler thinks there are cpus or vcpus

sinfo -lN

Output:

Wed Jun 14 00:49:36 2023
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
queue1-dy-compute-resource-1-1 1 queue1* allocated 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-2 1 queue1* allocated 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-3 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-4 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-5 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-6 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-7 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-8 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-9 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-10 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none

Note: on a c6a.48xlarge, the number of virtual cpus is 192.

If the YAML contains the Compute Resources Setting of DisableSimultaneousMultithreading: false, then all 192 vcpus will be used

If DisableSimultaneousMultithreading: true, then the number of cpus is 96 and there are no virtual cpus.

Verify that the yaml file used DisableSimultaneousMultithreading: true

When the jobs are both submitted to the queue they will be dispatched to different compute nodes.

squeue

output

Submitted batch job 4
ip-10-0-1-243:/shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu CF 0:01 1 queue1-dy-compute-resource-1-3
 3 queue1 CMAQ ubuntu R 21:28 2 queue1-dy-compute-resource-1-[1-2]

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.1x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3153.2
02 2017-12-23 3485.9
 Total Time = 6639.10
 Avg. Time = 3319.55

Based on the Total Time, adding an additional node gave a speed-up of 1.7.
6639.10/3888.50 = 1.7074

2.6.5. Submit a job to run on 288 pes, 3x96 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x96.ncclassic.csh

Verify that it is running on 3 nodes

sbatch

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 4:29 3 queue1-dy-compute-resource-1-[1-3]

Check the log for how quickly the job is running

grep 'Processing completed' run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.288.18x16pe.2day.20171222start.3x96.log

Output:

 Processing completed... 4.0245 seconds
 Processing completed... 4.0263 seconds
 Processing completed... 3.9885 seconds
 Processing completed... 3.9723 seconds
 Processing completed... 3.9934 seconds
 Processing completed... 4.0075 seconds
 Processing completed... 3.9871 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.288.18x16pe.2day.20171222start.3x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 288
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1475.9
02 2017-12-23 1580.7
 Total Time = 3056.60
 Avg. Time = 1528.30

Once you have submitted a few benchmark runs and they have completed successfully, proceed to the next chapter.

 3. Performance and Cost Optimization

3. Performance and Cost Optimization

Timing information and scaling plots to assist users in optimizing the performance of their parallel cluster.

	3.1. ParallelCluster Configuration

	3.2. CMAQv5.4 Benchmarks
	3.2.1. An explanation of why a scaling analysis is required for Multinode or Parallel MPI Codes

	3.3. Slurm Compute Node Provisioning

	3.4. Benchmark Timings for CMAQv5.4 12US1 Benchmark
	3.4.1. Benchmark Timing for c6a.48xlarge

	3.4.2. Benchmark Timing for hpc6a.48xlarge

	3.4.3. Benchmark Timing for hpc7g.8xlarge with 32 processors per node

	3.4.4. Benchmark Timing for hpc7g.16xlarge with 64 processors per node

	3.5. Benchmark Scaling Plots for CMAQv5.4 12US1 Benchmark
	3.5.1. Benchmark Scaling Plot for hpc6a.48xlarge

	3.5.2. Benchmark Scaling Plot for hpc7g.8xlarge

	3.5.3. Benchmark Scaling Plot for hpc7g.16xlarge

	3.5.4. Total Time and Cost versus CPU Plot for hpc7g.8xlarge

	3.6. Cost Information
	3.6.1. Cost Explorer

	3.6.2. Compute Node Cost Estimate

	3.6.3. Storage Cost Estimate

	3.6.4. Annual simulation local storage cost estimate

	3.6.5. Archive Storage cost estimate for annual simulation - assuming you want to save it for 1 year

	3.7. Recommended Workflow for extending to annual run

 3.1. ParallelCluster Configuration

 Performance Optimization

3.1. ParallelCluster Configuration

Selection of the compute nodes depends on the domain size and resolution for the CMAQ case, and what your model run time requirements are.
Larger hardware and memory configurations may also be required for instrumented versions of CMAQ incuding CMAQ-ISAM and CMAQ-DDM3D.
The ParallelCluster allows you to run the compute nodes only as long as the job requires, and you can also update the compute nodes as needed for your domain.

3.2. CMAQv5.4 Benchmarks

	Benchmark Name

	Grid Domain

	Recommended EC2 Instance

	vCPU

	Cores

	Memory

	EFA Network Bandwidth

	Storage (EBS Only)

	On Demand Hourly Cost

	Spot Hourly Cost

	Region

	Time (hr) per Simulation Day

	Cost per Simulation Day

	Training 12km Listos

	(25x25x35)

	c6a.2xlarge

	8

	4

	16 GiB

	Up to 12500 Megabit

	gp3

	0.306

	0.2879

	anywhere

	.0459

	$.014

	12NE3

	(100x100x35)

	c6a.8xlarge

	32

	16

	64 GiB

	12500 Megabit

	gp3

	1.224

	1.0008

	anywhere

	.274

	$.335

	12US1

	(459x299x35)

	c6a.48xlarge

	192

	96

	384 GiB

	50000 Megabit

	gp3

	7.344

	5.5809

	anywhere

	.827

	$6.07

	12US1

	(459x299x35)

	hpc6a.48xlarge

	n/a

	96

	384 GiB

	100 Gbps

	gp3

	2.88

	n/a

	us-east-2b

	.877

	$2.53

	12US1

	(459x299x35)

	hpc7g.8xlarge

	n/a

	64 (2x32)

	256 GiB

	200 Gbps

	gp3

	1.6832*2nodes

	n/a

	us-east-1

	.855

	$2.87

Note

*Hpc6a instances have simultaneous multi-threading disabled to optimize for HPC codes. This means that unlike other EC2 instances, Hpc6a vCPUs are physical cores, not threads. *Hpc6a instances available in US East (Ohio) and GovCloud (US-West) *HPC6a is available ondemand only (no spot pricing)

Note

*Two hpc7g.8xlarge nodes with 32 cores/node can run the 12US1 case as it has 256 GiB memory. hpc7g.16xlarge with 64cores/node only has 128 GiB memory, and can’t run the 12US1 case on 1 node

Note

*hpc7g instances have simultaneous multi-threading disabled to optimize for HPC codes. The instances with fewer cores, 16, 32 pes are custom to only those instances, you are not sharing a slice of an instance (this also removes the need for pinning).
hpc7g offers 16, 32 or 64 physical cpu instance size at launch

Note

If you are using SPOT pricing, ie. for the c6a.48xlarge compute nodes.
Sometimes, the nodes are not available for SPOT pricing in the region you are using.
If this is the case, the job will not start runnning in the queue, see AWS Troubleshooting.
ParallelCluster Troubleshooting
To avoid this, use the hpc EC2 instances, ie. hpc6a.48xlarge or hpc7g.16xlarge.

Data in table above is from the following:
Sizing and Price Calculator from AWS

[image: Extent of Domain for the Benchmarks]

3.2.1. An explanation of why a scaling analysis is required for Multinode or Parallel MPI Codes

Quote from the following link.

“IMPORTANT: The optimal value of –nodes and –ntasks for a parallel code must be determined empirically by conducting a scaling analysis. As these quantities increase, the parallel efficiency tends to decrease. The parallel efficiency is the serial execution time divided by the product of the parallel execution time and the number of tasks. If multiple nodes are used then in most cases one should try to use all of the CPU-cores on each node.”

Note

For the scaling analysis that was performed with CMAQ, the parallel efficiency was determined as the runtime for the smallest number of CPUs divided by the product of the parallel execution time and the number of additional cpus used. If smallest NPCOLxNPROW configuration was 18 cpus, the run time for that case was used, and then the parallel efficiency for the case where 36 cpus were used would be parallel efficiency = runtime_18cpu/(runtime_36cpu*2)*100

See also

Scaling Analysis - see section on Multinode or Parallel MPI Codes

Example Slurm script for Multinode Runs

3.3. Slurm Compute Node Provisioning

AWS ParallelCluster relies on SLURM to make the job allocation and scaling decisions. The jobs are launched, terminated, and resources maintained according to the Slurm instructions in the CMAQ run script. The YAML file for Parallel Cluster is used to set the identity of the head node and the compute node, and the maximum number of compute nodes that can be submitted to the queue. The head node can’t be updated after a cluster is created. The compute nodes, and the maximum number of compute nodes can be updated after a cluster is created.

Number of compute nodes dispatched by the slurm scheduler is specified in the run script using #SBATCH –nodes=XX #SBATCH –ntasks-per-node=YY where the maximum value of tasks per node or YY limited by many CPUs are on the compute node.

Resources specified in the YAML file:

	Ubuntu2004

	Disable Simultaneous Multi-threading

	Spot Pricing

	Shared EBS filesystem to install software

	1.2 TiB Shared Lustre file system with imported S3 Bucket (1.2 TiB is the minimum file size that you can specify for Lustre File System) mounted as /fsx or EBS volume 500 GB size mounted as /shared/data

	Slurm Placement Group enabled

	Elastic Fabric Adapter Enabled

See also

EC2 Instance Types

Note

Pricing information in the tables below are subject to change. The links from which this pricing data was collected are listed below.

See also

EC2 SPOT Pricing

See also

EC2 On-Demand Pricing

See also

Working with Spot Instances - ParallelCluster

hpc7g offers 16, 32 or 64 physical cpu instance size at launch

Note

Sometimes, the nodes are not available for SPOT pricing in the region you are using.
If this is the case, the job will not start runnning in the queue, see AWS Troubleshooting.
ParallelCluster Troubleshooting

3.4. Benchmark Timings for CMAQv5.4 12US1 Benchmark

3.4.1. Benchmark Timing for c6a.48xlarge

Table 2. Timing Results for CMAQv5.4 2 Day 12US1 Run on Parallel Cluster with c6a.xlarge head node and c6a.48xlarge Compute Nodes with Disable Simultaneous Multithreading turned on (using physical cores, not vcpus)

	CPUs

	NodesxCPU

	COLROW

	Day1 Timing (sec)

	Day2 Timing (sec)

	TotalTime

	CPU Hours/day InputData

	InputData

	Equation using Spot Pricing

	SpotCost

	Equation using On Demand Pricing

	OnDemandCost

	96

	1x96

	12x8

	3153.2

	3485.9

	6639.10

	1.844

	/fsx

	$5.5809/hr * 1 node * 1.844 =

	10.29

	7.34/hr * 1 node * 1.844 =

	13.53

	192

	2x96

	16x12

	1853.4

	2035.1

	3888.50

	1.08

	/fsx

	$5.5809/hr * 2 node * 1.08 =

	12.05

	7.34/hr * 2 node * 1.08 =

	15.85

	288

	3x96

	16x18

	1475.9

	1580.7

	3056.60

	.849

	/fsx

	5.5809/hr * 3 node * .849 =

	14.21

	7.34/hr * 3 node * .849 =

	18.6

3.4.2. Benchmark Timing for hpc6a.48xlarge

Table 2. Timing Results for CMAQv5.4 2 Day 12US1 Run on Parallel Cluster with c6a.xlarge head node and c6a.48xlarge Compute Nodes with Disable Simultaneous Multithreading turned on (using physical cores, not vcpus)

	CPUs

	NodesxCPU

	COLROW

	Day1 Timing (sec)

	Day2 Timing (sec)

	TotalTime

	CPU Hours/day InputData

	InputData

	Equation using Spot Pricing

	SpotCost

	Equation using On Demand Pricing

	OnDemandCost

	96

	1x96

	12x8

	3157.3

	3493.4

	6650.70

	1.84

	/fsx

	n/a

	n/a

	2.88/hr * 1 node * 1.845 =

	5.32

	192

	2x96

	16x12

	1850.0

	2058.0

	3908.00

	1.085

	/fsx

	n/a

	n/a

	2.88/hr * 2 node * 1.085 =

	6.25

	288

	3x96

	16x18

	1491.5

	1599.8

	3091.30

	.859

	/fsx

	n/a

	n/a

	2.88/hr * 3 node * .859 =

	7.41

3.4.3. Benchmark Timing for hpc7g.8xlarge with 32 processors per node

Table 3. Timing Results for CMAQv5.4 2 Day 12US1 Run on Parallel Cluster with c7g.large head node and hpc7g.8xlarge Compute Nodes with 32 processors per node.

	CPUs

	NodesxCPU

	COLROW

	Day1 Timing (sec)

	Day2 Timing (sec)

	TotalTime

	CPU Hours/day

	InputData

	Equation using On Demand Pricing

	OnDemandCost

	32

	1x32

	4x8

	6933.3

	6830.2

	13763.50

	3.82

	/fsx

	1.6832/hr * 1 node * 3.82 =

	6.42

	64

	2x32

	8x8

	3080.9

	3383.5

	6464.40

	1.795

	/fsx

	1.6832/hr * 2 node * 1.795 =

	6.04

	96

	3x32

	12x8

	2144.2

	2361.9

	4506.10

	1.252

	/fsx

	1.6832/hr * 3 node * 1.252 =

	6.32

	128

	4x32

	16x8

	1696.6

	1875.7

	3572.30

	.992

	/fsx

	1.6832/hr * 4 node * .992 =

	6.68

3.4.4. Benchmark Timing for hpc7g.16xlarge with 64 processors per node

Table 4. Timing Results for CMAQv5.4 2 Day 12US1 Run on Parallel Cluster with c7g.large head node and hpc7g.16xlarge Compute Nodes with 64 processors per node.

	CPUs

	NodesxCPU

	COLROW

	Day1 Timing (sec)

	Day2 Timing (sec)

	TotalTime

	CPU Hours/day

	InputData

	Equation using On Demand Pricing

	OnDemandCost

	64

	1x64

	8x8

	crash

	crash

	crash

	n/a

	/fsx

	1.6832/hr * 1 node * n/a =

	n/a

	128

	2x64

	8x16

	2074.2

	2298.9

	4373.10

	1.215

	/fsx

	1.6832/hr * 2 node * 1.214 =

	4.089

	192

	3x64

	12x16

	1617.1

	1755.3

	3372.40

	.937

	/fsx/

	1.6832/hr * 3 node * .937 =

	4.730

	256

	4x64

	16x16

	1347.3

	1501.4

	2848.70

	.7913

	/fsx/

	1.6832/hr * 4 node * .7913 =

	5.327

	320

	5x64

	16x20

	1177.0

	1266.6

	2443.60

	.6788

	/fsx/

	1.6832/hr * 5 node * .6788 =

	5.713

3.5. Benchmark Scaling Plots for CMAQv5.4 12US1 Benchmark

3.5.1. Benchmark Scaling Plot for hpc6a.48xlarge

Figure 1. Scaling per Node on hpc6a.48xlarge Compute Nodes (96 cores/node)

[image: Scaling per Node for hpc6a.48xlarge Compute Nodes (96cpu/node]

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=96

3.5.2. Benchmark Scaling Plot for hpc7g.8xlarge

Figure 2. Scaling per CPU on hpc7g.8xlarge compute node (32 cores/node)

[image: Scaling per CPU for hpc7g.8xlarge Compute Nodes (32cores/node]

3.5.3. Benchmark Scaling Plot for hpc7g.16xlarge

Figure 3. Scaling per Node on hpc7g.16xlarge Compute Nodes (64 cores/node)

[image: Scaling per Node for hpc7g.16xlarge Compute Nodes (32cores/node]

3.5.4. Total Time and Cost versus CPU Plot for hpc7g.8xlarge

Figure 4. Plot of Total Time and On Demand Cost varies as additional CPUs are used. Note that the run script and yaml settings settings that were optimized for running CMAQ on the cluster.

[image: Total Time and Cost for hpc7g.16xlarge Compute Nodes (64cores/node]

Figure 5. Plot of Total Time and On Demand Cost versus CPUs for c6a.48xlarge

[image: Total Time and Cost for c6a.48xlarge Compute Nodes (96cores/node]

3.6. Cost Information

Cost information is available within the AWS Web Console for your account as you use resources, and there are also ways to forecast your costs using the pricing information available from AWS.

3.6.1. Cost Explorer

Example screenshots of the AWS Cost Explorer Graphs were obtained after running several of the CMAQ Benchmarks, varying # nodes and # cpus and NPCOL/NPROW. These costs are of a two day session of running CMAQ on the ParallelCluster, and should only be used to understand the relative cost of the EC2 instances (head node and compute nodes), compared to the storage, and network costs.

In Figure 6 The Cost Explorer Display shows the cost of different EC2 Instance Types: note that c6a.48xlarge (purple) is highest cost - as these the most expensive compute nodes that were used. The hpc7g.16xlarge compute nodes incurred less cost (green).

Figure 6. Cost by Instance Type - AWS Console

[image: AWS Cost Management Console - Cost by Instance Type]

In Figure 7 The Cost Explorer displays a graph of the cost categorized by usage by spot or OnDemand, NatGateway, or Timed Storage. Note: c6a.48xlarge is highest generating cost resource, but other resources such as storage on the EBS volume and the network NatGatway or SubnetIDs also incur costs

Figure 7. Cost by Usage Type - AWS Console

[image: AWS Cost Management Console - Cost by Usage Type]

In Figure 8. The Cost Explorer Display shows the cost by Services including EC2 Instances, S3 Buckets, and FSx Lustre File Systems

Figure 8. Cost by Service Type - AWS Console

[image: AWS Cost Management Console - Cost by Service Type]

3.6.2. Compute Node Cost Estimate

Head node c7g.large compute cost = entire time that the parallel cluster is running (creation to deletion) = 6 hours * $0.0725/hr = $.435 using ondemand pricing.

Table 5. Extrapolated Cost of compute nodes used for CMAQv5.4+ Annual Simulation based on 2 day 12US1 benchmark

	Benchmark Case

	Compute Node

	Number of PES

	Number of Nodes

	Pricing

	Cost per node

	Time to completion (hour)

	Equation Extrapolate Cost for Annual Simulation

	Annual Cost

	Days to Complete Annual Simulation

	! 2 day 12US1

	c6a.48xlarge

	96

	1

	ONDEMAND

	$7.344/hour

	6639.10/3600 = 1.84

	1.84/2 * 365 = 336.6 hours/node * 1 node = 336.6 hr * 7.344/hr =

	$2,471

	14

	! 2 day 12US1

	hpc6a.48xlarge

	96

	1

	ONDEMAND

	$2.88/hour

	6639.10/3600 = 1.84

	1.84/2 * 365 = 336.6 hours/node * 1 node = 336.6 hr * 2.88/hr =

	$969.4

	14

	2 day 12US1

	hpc7g.16xlarge

	128

	2

	ONDEMAND

	$1.6832/hour

	4574.00/3600 = 1.27

	1.27/2 * 365 = 231.87 hours/node * 2 nodes = 463.75 hr * $1.6832/hr =

	$780

	9.6

	2 day 12US1

	hpc7g.16xlarge

	192

	3

	ONDEMAND

	$1.6832/hour

	3509.80/3600 = .9749

	.9749/2 * 365 = 177.9 hours/node * 3 nodes = 533.75 hr * $1.6832/hr =

	$898

	7.4

Note

These cost estimates depend on the availability of number of nodes for the instance type. If fewer nodes are available, then it will take longer to complete the annual run, but the costs should be accurate, as the 12US1 Domain Benchmark scales well up to this number of nodes.
The cost of running an annual simulation on 2 hpc7g.16xlarge nodes using OnDemand Pricing is $780, the cost of running an annual simulation on 3 hpc7g.16xlarge nodes using OnDemand pricing is $898. If you run on only 2 nodes, then you would pay less, but wait longer for the run to be completed, 9.6 days using 2 nodes versus 7.4 days using 3 nodes.

3.6.3. Storage Cost Estimate

See also

AWS Lustre Pricing

Table 6. Lustre SSD File System Pricing for us-east-1 region

	Storage Type

	Storage options

	Pricing with data compression enabled*

	Pricing (monthly)

	Persistent

	125 MB/s/TB

	$0.073

	$0.145/month

	Persistent

	250 MB/s/TB

	$0.105

	$0.210/month

	Persistent

	500 MB/s/TB

	$0.170

	$0.340/month

	Persistent

	1,000 MB/s/TB

	$0.300

	$0.600/month

	Scratch

	200/MB/s/TiB

	$0.070

	$0.140/month

Note, there is a difference in the storage sizing units that were obtained from AWS.

See also

 4. Developer Guide to install and run CMAQv5.4 on Single VM or Parallel Cluster

4. Developer Guide to install and run CMAQv5.4 on Single VM or Parallel Cluster

	4.1. Install CMAQv5.4+ on Single Virtual Machine Advanced (optional)
	4.1.1. Install Software and run CMAQv5.4 on c6a.xlarge for the 12km Listos Training Domain
	Build CMAQv5.4+ on c6a.xlarge EC2 instance
	Create a c6a.xlarge Virtual Machine

	Login to the Virtual Machine

	Make the /shared directory

	Change the group and ownership of the shared directory

	Create subdirectories on /shared

	Check operating system version

	Install Environment Modules

	Logout and then log back in to activate modules command

	Verify module command works

	Set up build environment

	Install Compilers and OpenMPI

	Change shell to use tcsh

	Logout and log back in, then check the shell

	Check available versions of compiler

	Choose gcc-9 and gfortran-9 as default compilers

	Check version of gcc

	Check version of gfortran

	Check version of OpenMPI

	Install Parallel Cluster CMAQ Repo

	Install and build netcdf C, netcdf Fortran, I/O API, and CMAQ

	Install netcdf-C and netcdf-Fortran

	Copy a file to set paths

	Exit cluster and log back in to activate the update shell, or use csh

	Create Custom Environment Module for Libraries

	Find path for openmpi libraries

	Find path for include files for openmpi

	Edit the config_cmaq_singlevm.csh script to specify the paths for OpenMPI

	Install Python

	Install jupyter notebook.

	Install and Build CMAQ
	Add compile option to makefile to get beyond a type mismatch error (note, this is only needed if you were using the gcc-11 compiler.

	Run make again

	Copy the run scripts from the repo to the run directory

	Download the Input data from the S3 Bucket
	Install aws command line

	Install unzip and unzip file

	Edit .cshrc

	Install the input data using the s3 script

	Link the input data directory to the default location

	Run CMAQ interactively using the following command:
	First check to see how many cpus you have available on the machine.

	If you upgrade this VM from a c6.xlarge to a c6.8xlarge, then you could run CMAQ interactively on 16 pes using the following command:

	4.1.2. Install Software and run CMAQv5.4 on c7g-hpc7g for the 12km Listos Training Domain
	Build CMAQv5.4+ on c7g.xlarge EC2 instance
	Create a c7g.xlarge Virtual Machine

	Login to the Virtual Machine

	Make the /shared directory

	Change the group and ownership of the shared directory

	Create subdirectories on /shared

	Check operating system version

	Install Environment Modules

	Logout and then log back in to activate modules command

	Verify module command works

	Set up build environment

	Install Compilers and OpenMPI

	Compiler versions

	Change shell to use tcsh

	Logout and log back in, then check the shell

	Check available versions of compiler

	Choose gcc-9 and gfortran-9 as default compilers

	Check version of gcc

	Check version of gfortran

	Check version of OpenMPI

	Install Parallel Cluster CMAQ Repo

	Install and build netcdf C, netcdf Fortran, I/O API, and CMAQ

	Install netcdf-C and netcdf-Fortran

	Copy a file to set paths

	Exit cluster and log back in to activate the update shell, or use csh

	Create Custom Environment Module for Libraries

	Find path for openmpi libraries

	Find path for include files for openmpi

	Edit the config_cmaq_singlevm.csh script to specify the paths for OpenMPI

	Install Python

	Install jupyter notebook.

	Install and Build CMAQ
	Add compile option to makefile to get beyond a type mismatch error (note, this is only needed if you were using the gcc-11 compiler.

	Run make again

	Copy the run scripts from the repo to the run directory

	Download the Input data from the S3 Bucket
	Install aws command line

	Install unzip and unzip file

	Edit .cshrc

	Install the input data using the s3 script

	Link the input data directory to the default location

	Run CMAQ interactively using the following command:
	First check to see how many cpus you have available on the machine.

	If you upgrade this VM from a c6.xlarge to a c6.8xlarge, then you could run CMAQ interactively on 16 pes using the following command:

	4.1.3. Install I/O API libraries that support HDF5

	4.1.4. Upgrade to run CMAQ on larger EC2 Instance
	Save the AMI and create a new VM using a larger c6a.8xlarge (with 32 processors)
	Use the AWS Console to Stop the Image

	Use the AWS Console to Create a new AMI

	Use the newly created AMI to launch a new Single VM using a larger EC2 instance.

	Load the modules

	Test running the listos domain on 32 processors

	Run CMAQv5.4 for the full 12US1 Domain on c6a.48xlarge
	Run utility to uncompress hdf5 *.nc4 files and save as classic *.nc files

	Increased disk space on /shared to 500 GB

	4.2. Install CMAQv5.4 on ParallelCluster (optional)
	4.2.1. Configure Parallel Cluster

	4.2.2. Create the hpc7g.16xlarge pcluster
	Check on status of cluster

	Login to cluster

	Check to make sure elastic network adapter (ENA) is enabled

	Check what modules are available on the cluster

	Load the openmpi module

	Load the Libfabric module

	Verify the gcc compiler version is greater than 8.0

	4.2.3. Install CMAQ sofware and libraries on ParallelCluster version 3.6
	Login to updated cluster

	Change shell to use .tcsh

	Check to see the tcsh shell is default

	Reload the environment modules

	Check to make sure elastic network adapter (ENA) is enabled

	Verify the gcc compiler version is greater than 8.0

	Change directories to install and build the libraries and CMAQ

	Build netcdf C and netcdf F libraries - these scripts work for the gcc 8+ compiler

	A .cshrc script with LD_LIBRARY_PATH was copied to your home directory, enter the shell again and check environment variables that were set using

	If the .cshrc was not created use the following command to create it

	Execute the shell to activate it

	Verify that you see the following setting

	Build I/O API library

	Build CMAQ

	4.2.4. Install netCDF libraries that use HDF5 and support nc4 compressed files
	Create Custom Environment Module for Libraries

	4.2.5. Install gh following these instructions

	4.2.6. Use gh authentication

	4.2.7. Run CMAQ using hpc7g.16xlarge compute nodes
	Verify that you have an updated set of run scripts from the pcluster-cmaq repo

	Verify that the input data is imported to /fsx from the S3 Bucket

	Preloading the files

	Create a /fsx/data and /fsx/data/output directory

	Link the data to what is being used in the run scriptso

	Run the 12US1 Domain on 32 pes

	Check the status in the queue

	check on the status of the cluster using CloudWatch

	check the timings while the job is still running using the following command

	When the job has completed, use tail to view the timing from the log file.

	Submit a request for a 64 pe job (2 x 32 pe) using 2 nodes

	Check on the status in the queue

	Check the status of the run

	Check whether the scheduler thinks there are cpus or vcpus

	When multiple jobs are submitted to the queue they will be dispatched to different compute nodes.

	When the job has completed, use tail to view the timing from the log file.

	Submit a job to run on 96 cores, 3x32 nodes

	Verify that it is running on 3 nodes

	Check the log for how quickly the job is running

	Submit a job to run on 128 cores, 4x32 nodes

	Verify that it is running on 4 nodes

	Check the log for how quickly the job is running

	4.2.8. Run CMAQ using hpc7g.8xlarge compute nodes
	Verify that you have an updated set of run scripts from the pcluster-cmaq repo

	Run the 12US1 Domain on 32 pes on hpc7g.8xlarge

	When the job has completed, use tail to view the timing from the log file.

	Submit a request for a 64 pe job (2 x 32 pe) using 2 nodes on hpc7g.8xlarge

	Check on the status in the queue

	Check the status of the run

	Check whether the scheduler thinks there are cpus or vcpus

	When multiple jobs are submitted to the queue they will be dispatched to different compute nodes.

	When the job has completed, use tail to view the timing from the log file.

	Submit a job to run on 96 cores, 3x32 nodes on hpc7g.8xlarge

	Verify that it is running on 3 nodes

	Check the log for how quickly the job is running

	4.2.9. Install Input Data on ParallelCluster
	Verify AWS CLI is available obtain data from AWS S3 Bucket

	Verify you can run the aws command

	Copy Input Data from S3 Bucket to lustre filesystem

	Use the S3 script to copy the CONUS input data from the CMAS s3 bucket

	For ParallelCluster: Import the Input data from a public S3 Bucket (optional)

	Convert the *.nc4 compressed netCDF4 files to netCDF classic (nc3) files

 4.1. Install CMAQv5.4+ on Single Virtual Machine Advanced (optional)

4.1. Install CMAQv5.4+ on Single Virtual Machine Advanced (optional)

Run CMAQv5.4+ on a single Virtual Machine (VM) using c6a.xlarge (4 CPUs) and Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-1031-aws x86_64), then upgrade to c6a.48xlarge.

	4.1.1. Install Software and run CMAQv5.4 on c6a.xlarge for the 12km Listos Training Domain
	Build CMAQv5.4+ on c6a.xlarge EC2 instance
	Create a c6a.xlarge Virtual Machine

	Login to the Virtual Machine

	Make the /shared directory

	Change the group and ownership of the shared directory

	Create subdirectories on /shared

	Check operating system version

	Install Environment Modules

	Logout and then log back in to activate modules command

	Verify module command works

	Set up build environment

	Install Compilers and OpenMPI

	Change shell to use tcsh

	Logout and log back in, then check the shell

	Check available versions of compiler

	Choose gcc-9 and gfortran-9 as default compilers

	Check version of gcc

	Check version of gfortran

	Check version of OpenMPI

	Install Parallel Cluster CMAQ Repo

	Install and build netcdf C, netcdf Fortran, I/O API, and CMAQ

	Install netcdf-C and netcdf-Fortran

	Copy a file to set paths

	Exit cluster and log back in to activate the update shell, or use csh

	Create Custom Environment Module for Libraries

	Find path for openmpi libraries

	Find path for include files for openmpi

	Edit the config_cmaq_singlevm.csh script to specify the paths for OpenMPI

	Install Python

	Install jupyter notebook.

	Install and Build CMAQ
	Add compile option to makefile to get beyond a type mismatch error (note, this is only needed if you were using the gcc-11 compiler.

	Run make again

	Copy the run scripts from the repo to the run directory

	Download the Input data from the S3 Bucket
	Install aws command line

	Install unzip and unzip file

	Edit .cshrc

	Install the input data using the s3 script

	Link the input data directory to the default location

	Run CMAQ interactively using the following command:
	First check to see how many cpus you have available on the machine.

	If you upgrade this VM from a c6.xlarge to a c6.8xlarge, then you could run CMAQ interactively on 16 pes using the following command:

	4.1.2. Install Software and run CMAQv5.4 on c7g-hpc7g for the 12km Listos Training Domain
	Build CMAQv5.4+ on c7g.xlarge EC2 instance
	Create a c7g.xlarge Virtual Machine

	Login to the Virtual Machine

	Make the /shared directory

	Change the group and ownership of the shared directory

	Create subdirectories on /shared

	Check operating system version

	Install Environment Modules

	Logout and then log back in to activate modules command

	Verify module command works

	Set up build environment

	Install Compilers and OpenMPI

	Compiler versions

	Change shell to use tcsh

	Logout and log back in, then check the shell

	Check available versions of compiler

	Choose gcc-9 and gfortran-9 as default compilers

	Check version of gcc

	Check version of gfortran

	Check version of OpenMPI

	Install Parallel Cluster CMAQ Repo

	Install and build netcdf C, netcdf Fortran, I/O API, and CMAQ

	Install netcdf-C and netcdf-Fortran

	Copy a file to set paths

	Exit cluster and log back in to activate the update shell, or use csh

	Create Custom Environment Module for Libraries

	Find path for openmpi libraries

	Find path for include files for openmpi

	Edit the config_cmaq_singlevm.csh script to specify the paths for OpenMPI

	Install Python

	Install jupyter notebook.

	Install and Build CMAQ
	Add compile option to makefile to get beyond a type mismatch error (note, this is only needed if you were using the gcc-11 compiler.

	Run make again

	Copy the run scripts from the repo to the run directory

	Download the Input data from the S3 Bucket
	Install aws command line

	Install unzip and unzip file

	Edit .cshrc

	Install the input data using the s3 script

	Link the input data directory to the default location

	Run CMAQ interactively using the following command:
	First check to see how many cpus you have available on the machine.

	If you upgrade this VM from a c6.xlarge to a c6.8xlarge, then you could run CMAQ interactively on 16 pes using the following command:

	4.1.3. Install I/O API libraries that support HDF5

	4.1.4. Upgrade to run CMAQ on larger EC2 Instance
	Save the AMI and create a new VM using a larger c6a.8xlarge (with 32 processors)
	Use the AWS Console to Stop the Image

	Use the AWS Console to Create a new AMI

	Use the newly created AMI to launch a new Single VM using a larger EC2 instance.

	Load the modules

	Test running the listos domain on 32 processors

	Run CMAQv5.4 for the full 12US1 Domain on c6a.48xlarge
	Run utility to uncompress hdf5 *.nc4 files and save as classic *.nc files

	Increased disk space on /shared to 500 GB

 4.1.1. Install Software and run CMAQv5.4 on c6a.xlarge for the 12km Listos Training Domain

4.1.1. Install Software and run CMAQv5.4 on c6a.xlarge for the 12km Listos Training Domain

Instructions are provided to build and install CMAQ on c6a.xlarge compute node installed from Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-1031-aws x86_64) Image that contains modules for git, openmpi and gcc. The compute node does not have a SLURM scheduler on it, so jobs are run interactively from the command line.

Instructions to install data and CMAQ libraries and model are provided along with sample run scripts to run CMAQ on 4 processors on a single c6a.xlarge instance.

This will provide users with experience using the AWS Console to create a Virtual Machine, select Operating System, select the size of the VM as c6a.xlarge vcpus, 8 GiB memory, using an SSH private key to login and install and run CMAQ.

Using this method, the user needs to be careful to start and stop the Virtual Machine and only have it run while doing the intial installation, and while running CMAQ.
The full c6a.xlarge instance will incur charges as long as it is on, even if a job isn’t running on it.

This is different than the Parallel Cluster, where if CMAQ is not running in the queue, then the Compute nodes are down, and not incurring costs.

Build CMAQv5.4+ on c6a.xlarge EC2 instance

Create a c6a.xlarge Virtual Machine

	Login to AWS Console

	Select Get Started with EC2

	Select Launch Instance

	Select Architechure (64-bit(x86)

	Application and OS (Operating System) Images: Select Ubunutu 22.04 LTS(HVM), SSD Volume Type
(the version of OS determines what packages are available from apt-get and that determines the version of software obtained, ie. cdo version > 2.0 for Ubuntu 22.04 LTS, or cdo version < 2.0 for Ubuntu 18.04.

	Instance Type: Select c6a.xlarge ($0.153/hr)

	Key pair - SSH public key, select existing key or create a new one.

	Network settings - select default settings

	Configure storage - select 100 GiB gp3 Root volume

	Select Launch instance

[image: AWS EC2 Console]

Login to the Virtual Machine

Change the permissions on the public key using command

chmod 400 [your-key-name].pem

Login to the Virtual Machine using ssh to the IP address using the public key.

ssh -Y -i ./xxxxxxx_key.pem ubuntu@xx.xx.xx.xx

Make the /shared directory

sudo mkdir /shared

Change the group and ownership of the shared directory

sudo chown ubuntu /shared
sudo chgrp ubuntu /shared

Change directories and verify that you see the /shared directory with Size of 100 GB

cd /shared

df -h

Output

df -h
Filesystem Size Used Avail Use% Mounted on
/dev/root 97G 1.6G 96G 2% /
tmpfs 16G 0 16G 0% /dev/shm
tmpfs 6.2G 876K 6.2G 1% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
/dev/nvme0n1p15 105M 6.1M 99M 6% /boot/efi
tmpfs 3.1G 4.0K 3.1G 1% /run/user/1000

Create subdirectories on /shared

Create a /shared/build, /shared/data and /shared/cyclecloud-cmaq directory

cd /shared
mkdir build
mkdir data

Check operating system version

lsb_release -a

output

No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 22.04.2 LTS
Release:	22.04
Codename:	jammy

Install Environment Modules

sudo apt-get upgrade
sudo apt-get install environment-modules

Logout and then log back in to activate modules command

Verify module command works

 module list

Output:

No Modulefiles Currently Loaded.

module avail

Output:

--- /usr/share/modules/modulefiles ---
dot module-git module-info modules null use.own

Set up build environment

Load the git module

module load module-git

If you do not see git available as a module, you may need to install it as follows:

sudo apt-get install git

Install Compilers and OpenMPI

sudo apt-get update
sudo apt-get install gcc-9
sudo apt-get install gfortran-9
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev libgtk2.0-dev
sudo apt-get install tcsh

Change shell to use tcsh

sudo usermod -s /usr/bin/tcsh ubuntu

Logout and log back in, then check the shell

echo $SHELL

output

/usr/bin/tcsh

Check available versions of compiler

dpkg --list | grep compiler

Choose gcc-9 and gfortran-9 as default compilers

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 9
sudo update-alternatives --install /usr/bin/gfortran gfortran /usr/bin/gfortran-9 9

Check version of gcc

gcc --version

output

gcc --version
gcc (Ubuntu 9.5.0-1ubuntu1~22.04) 9.5.0

Check version of gfortran

gfortran --version

Output

GNU Fortran (Ubuntu 9.5.0-1ubuntu1~22.04) 9.5.0

Check version of OpenMPI

mpirun --version

output

mpirun (Open MPI) 4.1.2

Install Parallel Cluster CMAQ Repo

cd /shared

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git

Install and build netcdf C, netcdf Fortran, I/O API, and CMAQ

cd /shared/pcluster-cmaq/install

Install netcdf-C and netcdf-Fortran

./gcc_netcdf_singlevm.csh |& tee ./gcc_netcdf_singlevm.log

If successful, you will see the following output, that at the bottom shows what versions of the netCDF library were installed.

+---+
| Congratulations! You have successfully installed the netCDF |
| Fortran libraries. |
| |
| You can use script "nf-config" to find out the relevant |
| compiler options to build your application. Enter |
| |
| nf-config --help |
| |
| for additional information. |
| |
| CAUTION: |
| |
| If you have not already run "make check", then we strongly |
| recommend you do so. It does not take very long. |
| |
| Before using netCDF to store important data, test your |
| build with "make check". |
| |
| NetCDF is tested nightly on many platforms at Unidata |
| but your platform is probably different in some ways. |
| |
| If any tests fail, please see the netCDF web site: |
| https://www.unidata.ucar.edu/software/netcdf/ |
| |
| NetCDF is developed and maintained at the Unidata Program |
| Center. Unidata provides a broad array of data and software |
| tools for use in geoscience education and research. |
| https://www.unidata.ucar.edu |
+---+

make[3]: Leaving directory '/shared/build/netcdf-fortran-4.5.4'
make[2]: Leaving directory '/shared/build/netcdf-fortran-4.5.4'
make[1]: Leaving directory '/shared/build/netcdf-fortran-4.5.4'
netCDF 4.8.1
netCDF-Fortran 4.5.3

Install I/O API

./gcc_ioapi_singlevm.csh |& tee ./gcc_ioapi_singlevm.log

Find what operating system is on the system:

 cat /etc/os-release

Output

PRETTY_NAME="Ubuntu 22.04.2 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.2 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy

Copy a file to set paths

cd /shared/pcluster-cmaq/install

cp dot.cshrc.singlevm ~/.cshrc

Exit cluster and log back in to activate the update shell, or use csh

Create Custom Environment Module for Libraries

There are two steps required to create your own custome module:

	write a module file

	add a line to your ~/.cshrc to update the MODULEPATH

Create a new custom module that will be loaded with:

module load ioapi-3.2/gcc-9.5-netcdf

Step 1: Create the module file for ioapi-3.2.

First, create a path to store the module file. The path must contain /Modules/modulefiles/ and should have the general form
/

 4.1.2. Install Software and run CMAQv5.4 on c7g-hpc7g for the 12km Listos Training Domain

4.1.2. Install Software and run CMAQv5.4 on c7g-hpc7g for the 12km Listos Training Domain

Instructions are provided to build and install CMAQ on c7g.xlarge compute node installed from Canonical, Ubuntu, 22.04 LTS, arm64 jammy image build on 2023-05-16 Image that contains modules for git, openmpi and gcc. The compute node does not have a SLURM scheduler on it, so jobs are run interactively from the command line.

Instructions to install data and CMAQ libraries and model are provided along with sample run scripts to run CMAQ on 4 processors on a single c7g.xlarge instance.

This will provide users with experience using the AWS Console to create a Virtual Machine, select Operating System, select the size of the VM as c7g.xlarge vcpus, 8 GiB memory, using an SSH private key to login and install and run CMAQ.

Using this method, the user needs to be careful to start and stop the Virtual Machine and only have it run while doing the intial installation, and while running CMAQ.
The full c7g.xlarge instance will incur charges as long as it is on, even if a job isn’t running on it.

This is different than the Parallel Cluster, where if CMAQ is not running in the queue, then the Compute nodes are down, and not incurring costs.

Build CMAQv5.4+ on c7g.xlarge EC2 instance

Create a c7g.xlarge Virtual Machine

	Login to AWS Console

	Select Get Started with EC2

	Select Launch Instance

	Select Architecture - 64-bit (Arm)

	Select Application and OS (Operating System) Images: Select Ubunutu 22.04 LTS(HVM), SSD Volume Type
(the version of OS and the architecture selected (64-bit (Arm)) determines what packages are available from apt-get and that determines the version of software obtained.

	Instance Type: Select c7g.xlarge ($0.145/hr)

	Key pair - SSH public key, select existing key or create a new one.

	Network settings - select default settings

	Configure storage - select 100 GiB gp3 Root volume

	Select Launch instance

[image: AWS EC2 Console]

Login to the Virtual Machine

Change the permissions on the public key using command

chmod 400 [your-key-name].pem

Login to the Virtual Machine using ssh to the IP address using the public key.

ssh -Y -i ./xxxxxxx_key.pem ubuntu@xx.xx.xx.xx

Make the /shared directory

sudo mkdir /shared

Change the group and ownership of the shared directory

sudo chown ubuntu /shared
sudo chgrp ubuntu /shared

Change directories and verify that you see the /shared directory with Size of 100 GB

cd /shared

df -h

Output

df -h
Filesystem Size Used Avail Use% Mounted on
/dev/root 97G 1.6G 96G 2% /
tmpfs 16G 0 16G 0% /dev/shm
tmpfs 6.2G 876K 6.2G 1% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
/dev/nvme0n1p15 105M 6.1M 99M 6% /boot/efi
tmpfs 3.1G 4.0K 3.1G 1% /run/user/1000

Create subdirectories on /shared

Create a /shared/build, /shared/data and /shared/cyclecloud-cmaq directory

cd /shared
mkdir build
mkdir data

Check operating system version

lsb_release -a

output

No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 22.04.2 LTS
Release:	22.04
Codename:	jammy

Install Environment Modules

sudo apt-get upgrade
sudo apt-get install environment-modules

Logout and then log back in to activate modules command

Verify module command works

 module list

Output:

No Modulefiles Currently Loaded.

module avail

Output:

--- /usr/share/modules/modulefiles ---
dot module-git module-info modules null use.own

Set up build environment

Load the git module

module load module-git

If you do not see git available as a module, you may need to install it as follows:

sudo apt-get install git

Install Compilers and OpenMPI

sudo apt-get update
sudo apt-get install gcc-9
sudo apt-get install gfortran-9
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev libgtk2.0-dev
sudo apt-get install tcsh

Compiler versions

Note, that there are more recent compilers, any CMAQ may run faster using them.

<a href=”https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/gcc-12”<ARM gcc-12 Performance optimization

 4.1.3. Install I/O API libraries that support HDF5

4.1.3. Install I/O API libraries that support HDF5

This is required in order to:

	Run CMAQ using the compressed netCDF-4 input files provided on the S3 bucket
or

	Convert the *.nc4 files to *.nc files (to uncompressed classic netCDF-3 input files)

First build HDF5 libraries, then build netCDF-C, netCDF-Fortran

cd /shared/pcluster-cmaq
./gcc11_install_hdf5.csh

 4.1.4. Upgrade to run CMAQ on larger EC2 Instance

4.1.4. Upgrade to run CMAQ on larger EC2 Instance

Save the AMI and create a new VM using a larger c6a.8xlarge (with 32 processors)

Requires access to the AWS Web Interface
(I will look for insructions on how to do this from the aws command line, but I don’t currently have a method for this.)

Use the AWS Console to Stop the Image

add screenshot

Use the AWS Console to Create a new AMI

add screenshot

Check to see that the AMI has been created by examining the status. Wait for the status to change from Pending to Available.

Use the newly created AMI to launch a new Single VM using a larger EC2 instance.

Launch a new instance using the AMI with the software loaded and request a spot instance for the c6a.8xlarge EC2 instance

Load the modules

Test running the listos domain on 32 processors

Output

 Processing Day/Time [YYYYDDD:HHMMSS]: 2017357:235600
 Which is Equivalent to (UTC): 23:56:00 Saturday, Dec. 23, 2017
 Time-Step Length (HHMMSS): 000400
 VDIFF completed... 3.6949 seconds
 COUPLE completed... 0.3336 seconds
 HADV completed... 1.8413 seconds
 ZADV completed... 0.5154 seconds
 HDIFF completed... 0.4116 seconds
 DECOUPLE completed... 0.0696 seconds
 PHOT completed... 0.7443 seconds
 CLDPROC completed... 2.4009 seconds
 CHEM completed... 1.3362 seconds
 AERO completed... 1.3210 seconds
 Master Time Step
 Processing completed... 12.6698 seconds

 =--> Data Output completed... 0.9872 seconds

 ==
 |>--- PROGRAM COMPLETED SUCCESSFULLY ---<|
 ==
 Date and time 0:00:00 Dec. 24, 2017 (2017358:000000)

 The elapsed time for this simulation was 3389.0 seconds.

315644.552u 1481.008s 56:29.98 9354.7%	0+0k 33221248+26871200io 9891pf+0w

CMAQ Processing of Day 20171223 Finished at Wed Jun 7 02:25:47 UTC 2023

\\\\\=====\\\\\=====\\\\\=====\\\\\=====/////=====/////=====/////=====/////

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 80.6
02 2018-08-06 72.7
03 2018-08-07 76.3
 Total Time = 229.60
 Avg. Time = 76.53

Run CMAQv5.4 for the full 12US1 Domain on c6a.48xlarge

Download the full 12US1 Domain that is netCDF4 compressed and convert it to classic netCDF-3 compression.

Note: I first tried running this domain on the c6a.8xlarge on 32 processors.
The model failed, with a signal 9 - likely not enough memory available to run the model.

I re-saved the AMI and launched a c6a.48xlarge with 192 vcpus, running as spot instance.

Spot Pricing cost for Linux in US East Region

c6a.48xlarge	$6.4733 per Hour

Run utility to uncompress hdf5 *.nc4 files and save as classic *.nc files

May need to look at disabling hyperthreading at runtime.

Disable Hyperthreading

Increased disk space on /shared to 500 GB

Ran out of disk space when trying to run the full 12US1 domain, so it is necessary to increase the size.
You can do this in the AWS Web Interface without stopping the instance.

Expanded the root volume to 500 GB, and increased the throughput to 1000 MB/s and then expanded it using these instructions, and then resized it.

Recognize Expanded Volume

Rerunning the 12US1 case on 8x12 processors - for total of 96 processors.

It takes about 13 minutes of initial I/O prior to the model starting.

Successful run output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3395.1
02 2017-12-23 3389.0
 Total Time = 6784.10
 Avg. Time = 3392.05

Note, this run time is slower than a single node of the Parallel Cluster using the HPC6a.48xlarge (total time = 5000 seconds). Note the 12US1 domain is larger than the 12US2 domain that was used for the HPC6a.48xlarge benchmarks.
It would be good to do another benchmark for 12US1 using HPC6a.48xlarge a compute node that is configured for HPC by AWS. AWS turns off hyperthreading by default for HPC6a.48xlarge, and there may be other optimizations for HPC applications (disk/networking/cpu).

 4.2. Install CMAQv5.4 on ParallelCluster (optional)

4.2. Install CMAQv5.4 on ParallelCluster (optional)

	Create the ParallelCluster with the base Ubutu OS using c7g.large head node and c7g.16xlarge as the compute node.

	Learn how to install CMAQ software and underlying libraries, copy input data, and run CMAQ.

Notice

Skip this tutorial if you do not want to learn how to install the CMAQv5.4 software and proceed to the post-processing and QA instructions.
Note, you may wish to build the underlying libraries and CMAQ and code if you wish to create a ParallelCluster using a different family of compute nodes, such as the c6gn.16xlarge compute nodes AMD Graviton.

	4.2.1. Configure Parallel Cluster

	4.2.2. Create the hpc7g.16xlarge pcluster
	Check on status of cluster

	Login to cluster

	Check to make sure elastic network adapter (ENA) is enabled

	Check what modules are available on the cluster

	Load the openmpi module

	Load the Libfabric module

	Verify the gcc compiler version is greater than 8.0

	4.2.3. Install CMAQ sofware and libraries on ParallelCluster version 3.6
	Login to updated cluster

	Change shell to use .tcsh

	Check to see the tcsh shell is default

	Reload the environment modules

	Check to make sure elastic network adapter (ENA) is enabled

	Verify the gcc compiler version is greater than 8.0

	Change directories to install and build the libraries and CMAQ

	Build netcdf C and netcdf F libraries - these scripts work for the gcc 8+ compiler

	A .cshrc script with LD_LIBRARY_PATH was copied to your home directory, enter the shell again and check environment variables that were set using

	If the .cshrc was not created use the following command to create it

	Execute the shell to activate it

	Verify that you see the following setting

	Build I/O API library

	Build CMAQ

	4.2.4. Install netCDF libraries that use HDF5 and support nc4 compressed files
	Create Custom Environment Module for Libraries

	4.2.5. Install gh following these instructions

	4.2.6. Use gh authentication

	4.2.7. Run CMAQ using hpc7g.16xlarge compute nodes
	Verify that you have an updated set of run scripts from the pcluster-cmaq repo

	Verify that the input data is imported to /fsx from the S3 Bucket

	Preloading the files

	Create a /fsx/data and /fsx/data/output directory

	Link the data to what is being used in the run scriptso

	Run the 12US1 Domain on 32 pes

	Check the status in the queue

	check on the status of the cluster using CloudWatch

	check the timings while the job is still running using the following command

	When the job has completed, use tail to view the timing from the log file.

	Submit a request for a 64 pe job (2 x 32 pe) using 2 nodes

	Check on the status in the queue

	Check the status of the run

	Check whether the scheduler thinks there are cpus or vcpus

	When multiple jobs are submitted to the queue they will be dispatched to different compute nodes.

	When the job has completed, use tail to view the timing from the log file.

	Submit a job to run on 96 cores, 3x32 nodes

	Verify that it is running on 3 nodes

	Check the log for how quickly the job is running

	Submit a job to run on 128 cores, 4x32 nodes

	Verify that it is running on 4 nodes

	Check the log for how quickly the job is running

	4.2.8. Run CMAQ using hpc7g.8xlarge compute nodes
	Verify that you have an updated set of run scripts from the pcluster-cmaq repo

	Run the 12US1 Domain on 32 pes on hpc7g.8xlarge

	When the job has completed, use tail to view the timing from the log file.

	Submit a request for a 64 pe job (2 x 32 pe) using 2 nodes on hpc7g.8xlarge

	Check on the status in the queue

	Check the status of the run

	Check whether the scheduler thinks there are cpus or vcpus

	When multiple jobs are submitted to the queue they will be dispatched to different compute nodes.

	When the job has completed, use tail to view the timing from the log file.

	Submit a job to run on 96 cores, 3x32 nodes on hpc7g.8xlarge

	Verify that it is running on 3 nodes

	Check the log for how quickly the job is running

	4.2.9. Install Input Data on ParallelCluster
	Verify AWS CLI is available obtain data from AWS S3 Bucket

	Verify you can run the aws command

	Copy Input Data from S3 Bucket to lustre filesystem

	Use the S3 script to copy the CONUS input data from the CMAS s3 bucket

	For ParallelCluster: Import the Input data from a public S3 Bucket (optional)

	Convert the *.nc4 compressed netCDF4 files to netCDF classic (nc3) files

 4.2.1. Configure Parallel Cluster

 CMAQv5.4 on Parallel Cluster Advanced Tutorial (optional)

4.2.1. Configure Parallel Cluster

Use ParallelCluster with default Ubuntu OS using hpc7g.large head node and hpc7g.16xlarge compute node.

Step by step instructions to configuring and running a ParallelCluster for the CMAQ 12US1 benchmark with instructions to install the libraries and software.

Notice

Skip this tutorial if you successfully completed the CMAQv5.4 on Parallel Cluster Intermediate Tutorial.
Unless you need to build the CMAQ libraries and code and run on a different family of compute nodes, such as the c6gn.16xlarge compute nodes AMD Graviton.

Activate the virtual environment to use the ParallelCluster command line

source ~/apc-ve/bin/activate
source ~/.nvm/nvm.sh

Upgrade to get the latest version of ParallelCluster

python3 -m pip install --upgrade "aws-parallelcluster"

Verify that the ParallelCluster AWS CLI is installed by checking the version

pcluster version

Output:

		{
 "version": "3.6.0"
}

Use an existing yaml file from the git repo to create a ParallelCluster

cd /your/local/machine/install/path/

Use a configuration file from the github repo that was cloned to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq/yaml

Edit the hpc7g.16xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

vi hpc7g.16xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

Note

	the hpc7g-16xlarge*.yaml is configured to use ONDEMAND instance pricing for the compute nodes.

	the hpc7g-16xlarge*.yaml is configured to the the hpc7g.16xlarge as the compute node, with up to 10 compute nodes, specified by MaxCount: 10.

	the hpc7g-16xlarge*.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (192 virtual cpus reduced to 96 cpus)

	the hpc7g-16xlarge*.yaml is configured to enable the setting of a placement group to allow low inter-node latency

	the hpc7g-16xlarge*.yaml is configured to enables the elastic fabric adapter

	given this yaml configuration, the maximum number of PEs that could be used to run CMAQ is 64 cpus x 10 = 640, the max settings for NPCOL, NPROW is NPCOL = 32, NPROW = 20 or NPCOL=20, NPROW=32 in the CMAQ run script. Note: CMAQ does not scale well beyond 2-3 compute nodes.

Replace the key pair and subnet ID in the hpc7g.16xlarge*.yaml file with the values created when you configured the demo cluster

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c7g.large
 Networking:
 SubnetId: subnet-xx-xx-xx << replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your_key << replace
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 CapacityType: ONDEMAND
 Networking:
 SubnetIds:
 - subnet-xx-xx-x x << replace
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: hpc7g.16xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200

The Yaml file for the hpc7g.16xlarge contains the settings as shown in the following diagram.

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a hpc7g.large head node and hpc7g.16xlarge compute nodes using ONDEMAND
[image: hpc7g.16xlarge yaml configuration]

4.2.2. Create the hpc7g.16xlarge pcluster

pcluster create-cluster --cluster-configuration hpc7g.16xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml --cluster-name cmaq --region us-east-1

Check on status of cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-1 --cluster-name cmaq

Note

Notice that the hpc7g.16xlarge yaml configuration file contains a setting for PlacementGroup.

PlacementGroup:
 Enabled: true

A placement group is used to get the lowest inter-node latency.

A placement group guarantees that your instances are on the same networking backbone.

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Check what modules are available on the cluster

module avail

Output:

module avail
-- /usr/share/modules/modulefiles ---
armpl/21.0.0 dot libfabric-aws/1.17.1 module-git module-info modules null openmpi/4.1.5 use.own

Load the openmpi module

module load openmpi/4.1.5

Load the Libfabric module

module load libfabric-aws/1.17.1

Verify the gcc compiler version is greater than 8.0

gcc --version

output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See also

Link to the AWS Enhanced Networking Adapter Documentation

See also

ParallelCluster User Manual

 4.2.3. Install CMAQ sofware and libraries on ParallelCluster version 3.6

4.2.3. Install CMAQ sofware and libraries on ParallelCluster version 3.6

note, when you update the version of ParallelCluster, you often get different versions of the openmpi, libfabric, and gcc compilers and environment modules.

Login to updated cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Change shell to use .tcsh

Note

This command depends on what OS you have installed on the ParallelCluster

sudo usermod -s /bin/tcsh ubuntu

or

sudo usermod -s /bin/tcsh centos

Log out and log back in to have the tcsh shell be active

exit

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Check to see the tcsh shell is default

echo $SHELL

Reload the environment modules

module load openmpi/4.1.5 libfabric-aws/1.17.1

The following instructions assume that you will be installing the software to a /shared/build directory

mkdir /shared/build

Install the pcluster-cmaq git repo to the /shared directory

cd /shared

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Verify the gcc compiler version is greater than 8.0

gcc --version

Output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Change directories to install and build the libraries and CMAQ

cd /shared/pcluster-cmaq/install

The install process currently uses .csh scripts to install the libraries.

An alternative is to keep a copy of the source code for netcdf-C and netcdf-Fortran and all of the other underlying code on an S3 bucket and to use custom bootstrap actions to build the sofware as the ParallelCluster is provisioned.

The following link provides instructions on how to create a custom bootstrap action to pre-load software from an S3 bucket to the ParallelCluster at the time that the cluster is created.

Custom Bootstrap Actions

Build netcdf C and netcdf F libraries - these scripts work for the gcc 8+ compiler

Note, if this script fails, it is typically because NCAR has released a new version of netCDF C or Fortran, so the old version is no longer available, or if they have changed the name or location of the download file.

./gcc_netcdf_cluster.csh

A .cshrc script with LD_LIBRARY_PATH was copied to your home directory, enter the shell again and check environment variables that were set using

cat ~/.cshrc

If the .cshrc was not created use the following command to create it

cp dot.cshrc.pcluster.v36 ~/.cshrc

Execute the shell to activate it

csh

env

Verify that you see the following setting

env | grep LD_LIBRARY_PATH

Output:

LD_LIBRARY_PATH=/opt/amazon/openmpi/lib64:/shared/build/netcdf/lib:/shared/build/netcdf/lib

Build I/O API library

./gcc_ioapi_cluster.v36.csh

Build CMAQ

./gcc_cmaq54+_pcluster.csh

Check to confirm that the cmaq executable has been built

ls /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/BLD_CCTM_v54+_gcc/*.exe

4.2.4. Install netCDF libraries that use HDF5 and support nc4 compressed files

Need to have this version of the library installed to uncompress the *.nc4 data using the indexer.csh script.

cd /shared/pcluster-cmaq/install

./gcc_install_hdf5.csh

Create Custom Environment Module for Libraries

There are two steps required to create your own custome module:

	write a module file

	add a line to your ~/.cshrc to update the MODULEPATH

Create a new custom module that will be loaded with:

module load ioapi-3.2/gcc-9.5-netcdf

Step 1: Create the module file for ioapi-3.2.

First, create a path to store the module file. The path must contain /Modules/modulefiles/ and should have the general form
/

 4.2.7. Run CMAQ using hpc7g.16xlarge compute nodes

4.2.7. Run CMAQ using hpc7g.16xlarge compute nodes

Verify that you have an updated set of run scripts from the pcluster-cmaq repo

cd /shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/

ls -lrt run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x64.ncclassic.csh

diff run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x64.ncclassic.csh /shared/pcluster-cmaq/run_scripts/cmaqv54+/

If they don’t exist or are not identical, then copy the run scripts from the repo

cp /shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/run_cctm* /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Verify that the input data is imported to /fsx from the S3 Bucket

ls /fsx

Preloading the files

Amazon FSx copies data from your Amazon S3 data repository when a file is first accessed. CMAQ is sensitive to latencies, so it is best to preload contents of individual files or directories using the following command:

cd /fsx
nohup find /fsx/ -type f -print0 | xargs -0 -n 1 sudo lfs hsm_restore &

Create a /fsx/data and /fsx/data/output directory

mkdir -p /fsx/data/output

Link the data to what is being used in the run scriptso

setenv INPDIR /$DISK/data/CMAQ_Modeling_Platform_2018/2018_12US1 #Input Directory

cd /fsx/data
ln -s ../CMAQv5.4_2018_12US1_Benchmark_2Day_Input ./CMAQ_Modeling_Platform_2018

Run the 12US1 Domain on 32 pes

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x32.ncclassic.csh`

Note, it will take about 3-5 minutes for the compute notes to start up. This is reflected in the Status (ST) of CF (configuring)

Check the status in the queue

squeue -u ubuntu

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 2 queue1 CMAQ ubuntu CF 1 queue1-dy-compute-resource-1-[1]

After 5 minutes the status will change once the compute nodes have been created and the job is running

squeue -u ubuntu

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 2 queue1 CMAQ ubuntu R 19:30 1 queue1-dy-compute-resource-1-1

The 64 pe job was crashing due to exceeding the memory available. Using 32 cores, there is more memory per core available.
On 32 cores, the htop output shows the job using 121 out of 124 GB of memory.

[image: hpc7g.16xlarge htop]

The 32 pe job should take xx minutes to run (xx minutes per day)

check on the status of the cluster using CloudWatch

(optional)

Cloudwatch Dashboard
Monitoring Dashboard for ParallelCluster

check the timings while the job is still running using the following command

cd output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_1x32_classic

grep 'Processing completed' CTM_LOG_001*

Output:

 Processing completed... 17.3195 seconds
 Processing completed... 17.3576 seconds
 Processing completed... 17.2984 seconds
 Processing completed... 17.2890 seconds
 Processing completed... 23.1307 seconds
 Processing completed... 19.8616 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.32.4x8pe.2day.20171222start.1x32.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 6933.3
02 2017-12-23 6830.2
 Total Time = 13763.50
 Avg. Time = 6881.75

Submit a request for a 64 pe job (2 x 32 pe) using 2 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x32.ncclassic.csh

Check on the status in the queue

squeue -u ubuntu

Note, it takes about 5 minutes for the compute nodes to be initialized, once the job is running the ST or status will change from CF (configure) to R

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu R 7:20 1 queue1-dy-compute-resource-1-3

When you run 64 cores on two compute nodes, the amount of memory used per node is decreased as observed in the htop output below.

[image: Memory usage using 2 nodes x 32 cores hpc7g.16xlarge htop]

Check the status of the run

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.8x8pe.2day.20171222start.2x32.log

The 64 pe job should take xx minutes to run (xx minutes per day)

Note, this is a different domain (12US1 versus 12US2) than what was used for the HPC6a.48xlarge Benchmark runs, so the timings are not directly comparible.
The 12US1 domain is larger than 12US2.

‘12US1’
‘LAM_40N97W’ -2556000. -1728000. 12000. 12000. 459 299 1

Check whether the scheduler thinks there are cpus or vcpus

sinfo -lN

Output:

Fri Jun 30 16:39:48 2023
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
queue1-dy-compute-resource-1-1 1 queue1* allocated 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-2 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-3 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-4 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-5 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-6 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-7 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-8 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-9 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-10 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none

When multiple jobs are submitted to the queue they will be dispatched to different compute nodes.

squeue

output

ubuntu@queue1-dy-compute-resource-1-2:/shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 2 queue1 CMAQ ubuntu R 59:25 1 queue1-dy-compute-resource-1-1
 3 queue1 CMAQ ubuntu R 12:20 2 queue1-dy-compute-resource-1-[2-3]
 4 queue1 CMAQ ubuntu R 8:50 3 queue1-dy-compute-resource-1-[4-6]
 5 queue1 CMAQ ubuntu R 8:50 4 queue1-dy-compute-resource-1-[7-10]

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.8x8pe.2day.20171222start.2x32.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 64
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3080.9
02 2017-12-23 3383.5
 Total Time = 6464.40
 Avg. Time = 3232.20

Based on the Total Time, adding an additional node gave a speed-up of 2.129
13763.50/6464.40 = 2.129

Submit a job to run on 96 cores, 3x32 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x32.ncclassic.csh

Verify that it is running on 3 nodes

sbatch

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 4:29 3 queue1-dy-compute-resource-1-[1-3]

Check the log for how quickly the job is running

grep 'Processing completed' run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.3x32.log

Output:

 Processing completed... 6.6962 seconds
 Processing completed... 6.7025 seconds
 Processing completed... 6.7126 seconds
 Processing completed... 6.6939 seconds
 Processing completed... 6.6550 seconds
 Processing completed... 6.6515 seconds
 Processing completed... 9.7306 seconds
 Processing completed... 9.0629 seconds
 Processing completed... 7.0797 seconds
 Processing completed... 7.0134 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 20 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.3x32.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 2144.2
02 2017-12-23 2361.9
 Total Time = 4506.10
 Avg. Time = 2253.05

Based on the Total Time, adding 2 additional nodes gave a speed-up of 3.05
13763.50/4506.1 = 3.05

Submit a job to run on 128 cores, 4x32 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.4x32.ncclassic.csh

Verify that it is running on 4 nodes

squeue

output:

 5 queue1 CMAQ ubuntu R 37:14 4 queue1-dy-compute-resource-1-[7-10]

Check the log for how quickly the job is running

`grep ‘Processing completed’ run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.128.16x8pe.2day.20171222start.4x32.log

Output:

 Processing completed... 5.1118 seconds
 Processing completed... 5.0991 seconds
 Processing completed... 7.2644 seconds
 Processing completed... 8.1420 seconds
 Processing completed... 5.0802 seconds
 Processing completed... 5.0438 seconds
 Processing completed... 5.0477 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 20 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.128.16x8pe.2day.20171222start.4x32.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 128
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1696.6
02 2017-12-23 1875.7
 Total Time = 3572.30
 Avg. Time = 1786.15

Based on the Total Time, adding 3 additional nodes gave a speed-up of 3.85 out of expected 4x speedup.
13763.50/3572.30 = 3.85

Once you have submitted a few benchmark runs and they have completed successfully, proceed to the next chapter.

 4.2.8. Run CMAQ using hpc7g.8xlarge compute nodes

4.2.8. Run CMAQ using hpc7g.8xlarge compute nodes

Verify that you have an updated set of run scripts from the pcluster-cmaq repo

Run the 12US1 Domain on 32 pes on hpc7g.8xlarge

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x32.ncclassic.c7g.8xlarge.csh`

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.32.4x8pe.2day.20171222start.1x32.hpc7g.8xlarge.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 6266.1
02 2017-12-23 6868.5
 Total Time = 13134.60
 Avg. Time = 6567.30

Submit a request for a 64 pe job (2 x 32 pe) using 2 nodes on hpc7g.8xlarge

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x32.ncclassic.c7g.8xlarge.csh

Check on the status in the queue

squeue -u ubuntu

Note, it takes about 5 minutes for the compute nodes to be initialized, once the job is running the ST or status will change from CF (configure) to R

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu R 1:11:48 2 queue1-dy-compute-resource-2-[3-4]

Check the status of the run

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.8x8pe.2day.20171222start.2x32.hpc7g.8xlarge.log

The 64 pe job should take xx minutes to run (xx minutes per day)

Check whether the scheduler thinks there are cpus or vcpus

sinfo -lN

Output:

Fri Jun 30 16:39:48 2023
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
queue1-dy-compute-resource-1-1 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-2 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-3 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-4 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-1-5 1 queue1* idle~ 64 64:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-1 1 queue1* idle~ 32 32:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-2 1 queue1* idle~ 32 32:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-3 1 queue1* allocated 32 32:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-4 1 queue1* allocated 32 32:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-5 1 queue1* allocated 32 32:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-6 1 queue1* allocated 32 32:1:1 124518 0 1 dynamic, none
queue1-dy-compute-resource-2-7 1 queue1* allocated 32 32:1:1 124518 0 1 dynamic, none

When multiple jobs are submitted to the queue they will be dispatched to different compute nodes.

squeue

output

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu R 1:13:21 2 queue1-dy-compute-resource-2-[3-4]
 7 queue1 CMAQ ubuntu R 57:51 3 queue1-dy-compute-resource-2-[5-7]

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.8x8pe.2day.20171222start.2x32.hpc7g.8xlarge.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 64
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3122.1
02 2017-12-23 3419.1
 Total Time = 6541.20
 Avg. Time = 3270.60

Based on the Total Time, adding an additional node gave a speed-up of 2.008 with expected speedup of 2x
13134.60/6541.20 = 2.008

Submit a job to run on 96 cores, 3x32 nodes on hpc7g.8xlarge

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x32.ncclassic.c7g.8xlarge.csh

Verify that it is running on 3 nodes

sbatch

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 7 queue1 CMAQ ubuntu R 59:47 3 queue1-dy-compute-resource-2-[5-7]

Check the log for how quickly the job is running

grep 'Processing completed' run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.12x8pe.2day.20171222start.3x32.hpc7g.8xlarge.log

Output:

 Processing completed... 5.6952 seconds
 Processing completed... 8.3384 seconds
 Processing completed... 8.2416 seconds
 Processing completed... 5.7230 seconds
 Processing completed... 5.6911 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 20 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.12x8pe.2day.20171222start.3x32.hpc7g.8xlarge.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 2141.9
02 2017-12-23 2384.6
 Total Time = 4526.50
 Avg. Time = 2263.25

Based on the Total Time, adding 2 additional nodes gave a speed-up of 2.902, close to 3x if ideal scaling
13134.60/4526.50 = 2.902

Once you have submitted a few benchmark runs and they have completed successfully, proceed to the next chapter.

 4.2.9. Install Input Data on ParallelCluster

4.2.9. Install Input Data on ParallelCluster

(note, this has already been installed if the yaml file used the s3:cmas-cmaq filesystem on lustre.

(keeping in case users need to install the data from scratch.)

Verify AWS CLI is available obtain data from AWS S3 Bucket

Check to see if the aws command line interface (CLI) is installed

which aws

If it is installed, skip to the next step.

If it is not available please follow these instructions to install it.

See also

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

cd /shared

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

Verify you can run the aws command

 aws --help

If not, you may need to logout and back in.

Note

If you do not have credintials, skip this. The data is on a public bucket, so you do not need credentials.

Set up your credentials for using s3 copy (you can skip this if you do not have credentials)

aws configure

Copy Input Data from S3 Bucket to lustre filesystem

Verify that the /fsx directory exists; this is a lustre file system where the I/O is fastest

ls /fsx

If you are unable to use the lustre file system, the data can be installed on the /shared volume, if you have resized the volume to be large enough to store the input and output data.

Use the S3 script to copy the CONUS input data from the CMAS s3 bucket

Data will be saved to the /fsx file system

/shared/pcluster-cmaq/s3_scripts/s3_copy_nosign_2018_12US1_conus_cmas_opendata_to_fsx_20171222_cb6r3.csh

check that the resulting directory structure matches the run script

Note

The CONUS 12US1 input data requires 44 GB of disk space

(if you use the yaml file to import the data to the lustre file system rather than copying the data you save this space)

cd /fsx/data/cmas-cmaq-modeling-platform-2018

du -sh

output:

34G .

CMAQ ParallelCluster is configured to have 1.2 Terrabytes of space on /fsx filesystem (minimum size allowed for lustre /fsx), to allow multiple output runs to be stored.

For ParallelCluster: Import the Input data from a public S3 Bucket (optional)

A second method is available to import the data on the lustre file system using the yaml file to specify the s3 bucket location in the yaml file, rather than using the above aws s3 copy commands.

See also

Example available in c5n-18xlarge.ebs_shared.fsx_import.yaml

cd /shared/pcluster-cmaq/yaml
vi hpc6a.48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

Section that of the YAML file that specifies the name of the S3 Bucket.

 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://cmas-cmaq-modeling-platform-2018/2018_12US1/ <<< specify name of S3 bucket

This requires that the S3 bucket specified is publically available

Convert the *.nc4 compressed netCDF4 files to netCDF classic (nc3) files

cd /shared/pcluster-cmaq/s3_scripts

cp indexer.csh /fsx/data/CMAQ_Modeling_Platform_2018

cd /fsx/data/CMAQ_Modeling_Platform_2018

chmod 755 indexer.csh

find . -name '*.nc4' -exec ./indexer.csh {} \;

 5. Post-process and QA

5. Post-process and QA

	5.1. Post-process CMAQ and Install R
	5.1.1. Scripts to run combine and post processing
	Build the POST processing routines

	Edit, Build, and Run the POST processing routines

	5.1.2. Install R, Rscripts and Packages

	5.2. QA CMAQ
	5.2.1. Quality Assurance

	5.2.2. Run m3diff to compare the output data for two runs that have different values for NPCOL

	5.2.3. Run an R script to create the box plots and spatial plots comparing the output of two runs

	5.3. Compare Timing of CMAQ Routines
	5.3.1. Parse timings from the log file
	Compare the timings for the CONUS ParallelCluster Runs

	Edit the R script
	Run parse_timing.pes.lustre.cmaqv5.4.r script to examine timings of each science process in CMAQ

	5.4. Copy Output to S3 Bucket
	5.4.1. Copy Output Data and Run script logs to S3 Bucket

	5.4.2. Copy scripts and logs to /fsx

	5.4.3. Examine the output files

	5.4.4. Copy the output to an S3 Bucket

 5.1. Post-process CMAQ and Install R

5.1. Post-process CMAQ and Install R

Post-processing CMAQ Run, Install R and packages
Instructions to install R and packages for QA of CMAQ difference in output between two runs.

	5.1.1. Scripts to run combine and post processing
	Build the POST processing routines

	Edit, Build, and Run the POST processing routines

	5.1.2. Install R, Rscripts and Packages

 5.1.1. Scripts to run combine and post processing

5.1.1. Scripts to run combine and post processing

Build the POST processing routines

Instructions on how to Post-process CMAQ using the utilities under the POST directory

Note

The post-processing analysis is run on the head node.

Verify that the compute nodes are no longer running if you have completed all of the benchmark runs

squeue

You should see that no jobs are running.

Show compute nodes

scontrol show nodes

Edit, Build, and Run the POST processing routines

setenv DIR /shared/build/openmpi_gcc/CMAQ_v54+/

cd $DIR/POST/combine/scripts

sed -i 's/v54/v54+/g' bldit_combine.csh
./bldit_combine.csh gcc |& tee bldit_combine.log
cp run_combine.csh run_combine_12US1.csh
sed -i 's/v54/v54+/g' run_combine_12US1.csh
sed -i 's/Bench_2016_12SE1/2018_12US1_2x64_classic/g' run_combine_12US1.csh
sed -i 's/intel/gcc/g' run_combine_12US1.csh
sed -i 's/cb6r3_ae7_aq/cb6r5_ae7_aq/g' run_combine_12US1.csh
sed -i 's/2016-07-01/2017-12-22/g' run_combine_12US1.csh
sed -i 's/2016-07-14/2017-12-23/g' run_combine_12US1.csh
sed -i 's/${VRSN}_${compilerString}_${APPL}/${VRSN}_${MECH}_${compilerString}_${APPL}/g' run_combine_12US1.csh
setenv CMAQ_DATA /fsx/data
./run_combine_12US1.csh

cp run_calc_tmetric.csh run_calc_tmetric_12US1.csh
sed -i 's/Bench_2016_12SE1/2018_12US1_2x64_classic/g' run_calc_tmetric_12US1.csh
sed -i 's/intel/gcc/g' run_calc_tmetric_12US1.csh
sed -i 's/201607/201712/g' run_calc_tmetric_12US1.csh
setenv CMAQ_DATA /fsx/data
./run_calc_tmetric_12US1.csh

cd $DIR/POST/hr2day/scripts

cp run_hr2day.csh run_hr2day_12US1.csh
sed -i 's/Bench_2016_12SE1/2018_12US1_2x64_classic/g' run_hr2day_12US1.csh
sed -i 's/intel/gcc/g' run_hr2day_12US1.csh
sed -i 's/2016182/2015356/g' run_hr2day_12US1.csh
sed -i 's/2016195/2015357/g' run_hr2day_12US1.csh
setenv CMAQ_DATA /fsx/data
./run_hr2day_12US1.csh

#cd $DIR/POST/bldoverlay/scripts

#cp run_bldoverlay.csh run_bldoverlay_12US1.csh
#sed -i 's/Bench_2016_12SE1/2018_12US1_2x64_classic/g' run_bldoverlay_12US1.csh
#sed -i 's/intel/gcc/g' run_bldoverlay_12US1.csh
#sed -i 's/2016-07-01/2015-12-22/g' run_bldoverlay_12US1.csh
#sed -i 's/2016-07-02/2015-12-23/g' run_bldoverlay_12US1.csh
#setenv CMAQ_DATA /fsx/data
#./run_bldoverlay_12US1.csh

 5.1.2. Install R, Rscripts and Packages

5.1.2. Install R, Rscripts and Packages

First check to see if R is already installed.

R --version

If not, Install R on Ubuntu 2004 instructions available in the link below.

See also

Install R on Ubuntu 2004

sudo apt install build-essential

See also

ubuntu install

Install geospatial dependencies

be sure to have an updated system

sudo apt-get update && sudo apt-get upgrade -y

install PROJ

sudo apt-get install libproj-dev proj-data proj-bin unzip -y

optionally, install (selected) datum grid files

sudo apt-get install proj-data

install GEOS

sudo apt-get install libgeos-dev -y

install GDAL

sudo apt-get install libgdal-dev python3-gdal gdal-bin -y

install PDAL (optional)

sudo apt-get install libpdal-dev pdal libpdal-plugin-python -y

recommended to give Python3 precedence over Python2 (which is end-of-life since 2019)

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 1

Install software for diagram

sudo apt-get install graphviz

pip install diagrams

Install further compilation dependencies (Ubuntu 20.04)

sudo apt-get install \
 build-essential \
 flex make bison gcc libgcc1 g++ ccache \
 python3 python3-dev \
 python3-opengl python3-wxgtk4.0 \
 python3-dateutil libgsl-dev python3-numpy \
 wx3.0-headers wx-common libwxgtk3.0-gtk3-dev \
 libwxbase3.0-dev \
 libncurses5-dev \
 libbz2-dev \
 zlib1g-dev gettext \
 libtiff5-dev libpnglite-dev \
 libcairo2 libcairo2-dev \
 sqlite3 libsqlite3-dev \
 libpq-dev \
 libreadline6-dev libfreetype6-dev \
 libfftw3-3 libfftw3-dev \
 libboost-thread-dev libboost-program-options-dev libpdal-dev\
 subversion libzstd-dev \
 checkinstall \
 libglu1-mesa-dev libxmu-dev \
 ghostscript wget -y

For NVIZ on Ubuntu 20.04:

sudo apt-get install \
 ffmpeg libavutil-dev ffmpeg2theora \
 libffmpegthumbnailer-dev \
 libavcodec-dev \
 libxmu-dev \
 libavformat-dev libswscale-dev

ncdf4 package REQUIRES the netcdf library be version 4 or above, AND installed with HDF-5 support (i.e., the netcdf library must be compiled with the –enable-netcdf-4 flag).
Building netcdf with HDF5 support requires curl.

sudo apt-get install curl
sudo apt-get install libcurl4-openssl-dev

cd /shared/pcluster-cmaq

Install libraries with hdf5 support

Load modules

module load openmpi/4.1.1

module load libfabric-aws/1.13.2amzn1.0

./gcc_install_hdf5.pcluster.csh

Install ncdf4 package from source:

cd /shared/pcluster-cmaq/qa_scripts/R_packages

sudo R CMD INSTALL ncdf4_1.13.tar.gz --configure-args="--with-nc-config=/shared/build-hdf5/install/bin/nc-config"

Install packages used in the R scripts

sudo -i R
install.packages("rgdal")
install.packages("M3")
install.packages("fields")
install.packages("mapdata")
install.packages("ggplot2")
install.packages("patchwork")

Install M3

cd /shared/pcluster-cmaq/qa_scripts/R_packages

`sudo R CMD INSTALL M3_0.3.tar.gz’

Install pdftoppm to convert pdf files to images

sudo apt install poppler-utils

To view the script, install imagemagick

sudo apt-get install imagemagick

Install X11

sudo apt install x11-apps

Enable X11 forwarding

sudo vi /etc/ssh/sshd_config

add line

X11Forwarding yes

Verify that it was added

sudo cat /etc/ssh/sshd_config | grep -i X11Forwarding

Restart ssh

sudo service ssh restart

Exit the cluster

exit

Be sure that you have Xquartz running if your local machine is a mac.
Also that the DISPLAY environment variable is set.

For example in my .zshrc, I use the following setting

export DISPLAY=:0

If you modify your .zshrc, then resource it

source ~/.zshrc

Re-login to the cluster

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Test display

display xclock

See also

 5.2. QA CMAQ

5.2. QA CMAQ

Quality Assurance: Comparing the output of two CMAQ runs.

	5.2.1. Quality Assurance

	5.2.2. Run m3diff to compare the output data for two runs that have different values for NPCOL

	5.2.3. Run an R script to create the box plots and spatial plots comparing the output of two runs

 5.2.1. Quality Assurance

5.2.1. Quality Assurance

Instructions on how to to verify a successful CMAQ Run on ParallelCluster.

5.2.2. Run m3diff to compare the output data for two runs that have different values for NPCOL

cd /fsx/data/output
ls */*ACONC*

setenv AFILE output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_2x64_classic/CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_2x64_classic_20171222.nc
setenv BFILE output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic/CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc

m3diff

hit return several times to accept the default options

grep A:B REPORT

Should see all zeros.

Recompiled CMAQ using -march=native compiler option for gcc compiler, but still see differences in answers.
The answers are the same, or the differences are all zeros if the domain decomposition uses the same NPCOL, here, NPCOL differs (10 vs 16)

This behavior is different from what was observed with removing the -march=native compiler option for gcc on the AMD Cyclecloud HBV3 processor.
On cycle cloud, if CMAQ is compiled with -march=native removed from the compiler options, then the answers match if NPCOL differs.

@ NPCOL = 8; @ NPROW = 16
@ NPCOL = 12; @ NPROW = 16

grep A:B REPORT

output

 A:B 9.31323E-10@(78,122, 1) -9.31323E-10@(173, 98, 1) -1.67066E-14 1.11030E-11
 A:B 3.72529E-09@(272,162, 1) -7.45058E-09@(271,162, 1) -4.96030E-14 4.09644E-11
 A:B 7.45058E-09@(51,109, 1) -7.45058E-09@(39,191, 1) 3.67334E-14 8.05492E-11
 A:B 9.31323E-09@(270,159, 1) -8.14907E-09@(189, 41, 1) 4.33809E-13 1.57138E-10
 A:B 1.86265E-08@(53,108, 1) -1.30385E-08@(54,108, 1) 8.53858E-13 2.42891E-10
 A:B 4.09782E-08@(326,165, 1) -1.90921E-08@(327,166, 1) 1.49534E-12 3.98158E-10
 A:B 1.55531E-07@(326,165, 1) -8.19564E-08@(233,101, 1) 2.42760E-12 1.00020E-09
 A:B 1.77883E-07@(325,167, 1) -1.11759E-07@(324,170, 1) 1.29720E-12 1.93561E-09
 A:B 1.94646E-07@(325,167, 1) -1.36439E-07@(331,163, 1) 1.38651E-11 2.77102E-09
 A:B 1.69501E-07@(134,119, 1) -2.81259E-07@(50,223, 1) 2.44340E-11 3.76379E-09

CMAQv5.4+ does not have -march=native compile option as a default in the Makefile

Even with NPCOL the same, the answers are not matching.

more REPORT_3x64vs4x64

 FILE A: AFILE (output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic/CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc)

 FILE B: BFILE (output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_4x64_classic/CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_4x64_classic_20171222.nc)

 Date and time 2017356:000000 (0:00:00 Dec. 22, 2017)
 A:AFILE/NO2 vs B:BFILE/NO2 vs (A - B)
 MAX @(C, R, L) Min @(C, R, L) Mean Sigma
 A 6.07607E-02@(185, 12, 1) 2.09545E-06@(313,285, 1) 1.37065E-03 2.83485E-03
 B 6.07607E-02@(185, 12, 1) 2.09545E-06@(313,285, 1) 1.37065E-03 2.83485E-03
 A:B 3.72529E-09@(374,170, 1) -3.72529E-09@(377,170, 1) -3.22105E-14 2.88679E-11

 Date and time 2017356:010000 (1:00:00 Dec. 22, 2017)
 A:AFILE/NO2 vs B:BFILE/NO2 vs (A - B)
 MAX @(C, R, L) Min @(C, R, L) Mean Sigma
 A 6.00488E-02@(185, 13, 1) 2.17908E-06@(303,251, 1) 1.39298E-03 2.87296E-03
 B 6.00488E-02@(185, 13, 1) 2.17908E-06@(303,251, 1) 1.39298E-03 2.87296E-03
 A:B 7.45058E-09@(271,162, 1) -9.31323E-09@(374,169, 1) -3.20415E-15 6.70979E-11

 Date and time 2017356:020000 (2:00:00 Dec. 22, 2017)
 A:AFILE/NO2 vs B:BFILE/NO2 vs (A - B)
 MAX @(C, R, L) Min @(C, R, L) Mean Sigma
 A 5.68695E-02@(185, 13, 1) 1.81416E-06@(302,252, 1) 1.36102E-03 2.79681E-03
 B 5.68695E-02@(185, 13, 1) 1.81416E-06@(302,252, 1) 1.36102E-03 2.79681E-03
 A:B 7.45058E-09@(39,191, 1) -4.65661E-09@(378,170, 1) 4.00549E-13 9.75052E-11

5.2.3. Run an R script to create the box plots and spatial plots comparing the output of two runs

Examine the script to create the box plots and spatial plots and edit to use the output that you have generated in your runs.

First check what output is available on your ParallelCluster

If your I/O directory is /fsx

ls -rlt /fsx/data/output/*/*ACONC*

If your I/O directory is /shared/data

ls -lrt /shared/data/output/*/*ACONC*

Then edit the script to use the output filenames available.

cd /shared/pcluster-cmaq/qa_scripts
cp compare_EQUATES_benchmark_output_CMAS_pcluster.r compare_EQUATES_benchmark_output_CMAS_pcluster_hpc7g.18xlarge.r
vi compare_EQUATES_benchmark_output_CMAS_pcluster_hpc7g.18xlarge.r

#Directory, file name, and label for first model simulation (sim1)
sim1.label <- "CMAQv54+ 16x16 cores"
sim1.dir <- "/fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_4x64_classic/"
sim1.file <- paste0(sim1.dir,"CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_4x64_classic_20171222.nc")

#Directory, file name, and label for second model simulation (sim2)
sim2.label <- "CMAQv54+ 12x16 cores"
sim2.dir <- "/fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic/"
sim2.file <- paste0(sim2.dir,"CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc")

Run the R script

cd /shared/pcluster-cmaq/qa_scripts
Rscript compare_EQUATES_benchmark_output_CMAS_pcluster_hpc7g.18xlarge.r

Note: your plots will be created based on the setting of the output directory in the script

An example set of scripts are available, but these instructions can be modified to use the output generated in the script above.

To view the PDF plots use the command:

cd /shared/pcluster-cmaq/qa_scripts/qa_plots
gio open O3_MAPS_CMAQ*.pdf

To convert the PDF to a jpeg image use the script convert.csh.

cd /shared/pcluster-cmaq/qa_scripts/qa_plots

First examine what the convert.csh script is doing

more convert.csh

output:

#!/bin/csh

foreach name (`ls *.pdf`)
 set name2=`basename $name .pdf`
 echo $name
 echo $name2
 pdftoppm -jpeg -r 600 $name $name2
end

Run the convert script.

./convert.csh

When NPCOL is fixed, we are seeing no difference in the answers.

Example comparison using: 16x16 compared to 12x16

Use display to view the plots

display O3_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg

They are also displayed in the following plots:

Box Plot for ANO3J when NPCOL is identical for CMAQv5.3.3 (I didn’t see an identical plot for CMAQv5.4)

[image: O3_BOXPLOT_CMAQv533-GCC-6x6pe_vs_CMAQv533-GCC-6x9pe.jpeg]

Box plot shows no difference between ACONC output for a CMAQv5.3.3 run using different PE configurations as long as NPCOL is fixed (this is true for all species that were plotted (AOTHRJ, CO, NH3, NO2, O3, OH, SO2)

Box plot shows a difference betweeen ACONC output for a CMAQv5.4+ run using different PE configurations when NPCOL is different

ANO3J

[image: ANO3J_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

AOTHRJ

[image: AOTHRJ_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

CO

[image: CO_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

NH3

[image: NH3_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

NO2

[image: NO2_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

O3

[image: O3_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

OH

[image: OH_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

SO2

[image: SO2_BOXPLOT_CMAQv54+16x16cores_vs_CMAQv54+12x16cores.jpeg]

Note, the differences are small, but they grow with time. There is one plot for each of the 24 hours. The plot that contains the most differences will be in the bottom right of the panel for each species. You will need to zoom in to see the differences, as most of the grid cells do not have any difference, and they are displayed as grey. For the NO2 plot, you can see the most differences over the state of Pennsylvania at hour 12/22/2015 at hour 23:00, with the the magnitude of the maximum difference of +/- 4. E-6.

cd ../spatial_plots/16x16_vs_12x16
display O3_MAPS_CMAQv54+16x16cores_vs_CMAQv54+12x16cores-1.jpg

ANO3J

[image: ANO3J_MAPS_CMAQv54+16x16cores_vs_CMAQv54+12x16cores-1.jpg]

AOTHRJ

[image: AOTHRJ_MAPS_CMAQv54+16x16cores_vs_CMAQv54+12x16cores-1.jpg]

CO

[image: CO_MAPS_CMAQv54+16x16cores_vs_CMAQv54+12x16cores-1.jpg]

NH3

[image: NH3_MAPS_CMAQv54+16x16cores_vs_CMAQv54+12x16cores-1.jpg]

NO2

[image: NO2_MAPS_CMAQv533-GCC-12x9pe_vs_CMAQv533-GCC-8x9pe-1.jpg]

O3

[image: O3_MAPS_CMAQv533-GCC-12x9pe_vs_CMAQv533-GCC-8x9pe-1.jpg]

OH

[image: OH_MAPS_CMAQv533-GCC-12x9pe_vs_CMAQv533-GCC-8x9pe-1.jpg]

SO2
[image: SO2_MAPS_CMAQv533-GCC-12x9pe_vs_CMAQv533-GCC-8x9pe-1.jpg]

 5.3. Compare Timing of CMAQ Routines

5.3. Compare Timing of CMAQ Routines

Compare the timing of CMAQ Routines for two different run configurations.

	5.3.1. Parse timings from the log file
	Compare the timings for the CONUS ParallelCluster Runs

	Edit the R script
	Run parse_timing.pes.lustre.cmaqv5.4.r script to examine timings of each science process in CMAQ

 5.3.1. Parse timings from the log file

5.3.1. Parse timings from the log file

Compare the timings for the CONUS ParallelCluster Runs

Note

ParallelCluster Configurations can impact the model run times.

It is up the the user, as to what model run configurations are used to run CMAQ on the ParallelCluster.
The following configurations may impact the run time of the model.

	Using different PE configurations, using DisableSimultaneousMultithreading: true in yaml file, using 36 cpus - no virtual cpus

 NPCOL x NPROW , CPU , SBATCH Command

	[] 10x18 , 180 , #SBATCH –nodes=5, #SBATCH –ntasks-per-node=36

	[] 16x16, 256 , #SBATCH –nodes=8, #SBATCH –ntasks-per-node=32

	[] 16x18, 288 , #SBATCH –nodes=8, #SBATCH –ntasks-per-node=36

	Using different compute nodes

	[] c5n.18xlarge (72 virtual cpus, 36 cpus) - with Elastic Fabric Adapter

	[] c5n.9xlarge (36 virtual cpus, 18 cpus) - with Eleastic Fabric Adapter

	[] c5n.4xlarge (16 virtual cpus, 4 cpus) - without Elastic Fabric Adapter

	With and without SBATCH –exclusive option

	With and without Elastic Fabric and Elastic Network Adapter turned on

	With and without network placement turned on

	Using different local storage options and copying versus importing data to lustre

	[] input data imported from S3 bucket to lustre

	[] input data copied from S3 bucket to lustre

	[] input data copied from S3 bucket to an EBS volume

	Using different yaml settings for slurm

	[] DisableSimultaneousMultithreading= true

	[] DisableSimultaneousMultithreading= false

Edit the R script

First check to see what log files are available:

ls -lrt /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/*.log

Copy the log files to the repo, to save them, as once you log out and delete the cluster you won’t have them.
Note, they would need to be saved to your local fork of the repo.

cp /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/*.log /shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/logs/

ls -lrt /shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/logs/

Modify the name of the log file to match what is avaible on your system.

cd /shared/pcluster-cmaq/qa_scripts
vi parse_timing.pes.lustre.cmaqv5.4.r

Edit the following section of the script to specify the log file names available on your ParallelCluster

sens.dir <- '/shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/logs/'
base.dir <- '/shared/pcluster-cmaq/run_scripts/hpc7g.16xlarge/logs/'
files <- dir(sens.dir, pattern ='run_cctm5.4p_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.32.4x8pe.2day.20171222start.1x32.log')
b.files <- dir(base.dir,pattern='run_cctm5.4p_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.64.8x8pe.2day.20171222start.2x32.log')
#Compilers <- c('intel','gcc','pgi')
Compilers <- c('gcc')
name of the base case timing. I am using the current master branch from the CMAQ_Dev repository.
The project directory name is used for the sensitivity case.
base.name <- '12x9pe'
sens.name <- '6x18pe'

Run parse_timing.pes.lustre.cmaqv5.4.r script to examine timings of each science process in CMAQ

Rscript parse_timing.pes.lustre.cmaqv5.4.r

Timing Plot Comparing GCC run on 32, 64, 96, 128, 192, 256

[image: HPC7g 32 and 64 pe per core]

 5.4. Copy Output to S3 Bucket

5.4. Copy Output to S3 Bucket

Copy output from ParallelCluster to an S3 Bucket

	5.4.1. Copy Output Data and Run script logs to S3 Bucket

	5.4.2. Copy scripts and logs to /fsx

	5.4.3. Examine the output files

	5.4.4. Copy the output to an S3 Bucket

 5.4.1. Copy Output Data and Run script logs to S3 Bucket

5.4.1. Copy Output Data and Run script logs to S3 Bucket

Note

You need permissions to copy to a S3 Bucket.

See also

S3 Access Control

Be sure you enter your access credentials on the parallel cluster by running:

aws configure

Currently, the bucket listed below has ACL turned off

See also

S3 disable ACL

See example of sharing bucket across accounts.

See also

Bucket owner granting cross-account permissions

5.4.2. Copy scripts and logs to /fsx

The CTM_LOG files don’t contain any information about the compute nodes that the jobs were run on.
Note, it is important to keep a record of the NPCOL, NPROW setting and the number of nodes and tasks used as specified in the run script: #SBATCH –nodes=16 #SBATCH –ntasks-per-node=8
It is also important to know what volume was used to read and write the input and output data, so it is recommended to save a copy of the standard out and error logs, and a copy of the run scripts to the OUTPUT directory for each benchmark.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
mkdir -p /fsx/data/output/logs/
mkdir -p /fsx/data/output/scripts/
cp run*.log /fsx/data/output/logs/
cp run*.csh /fsx/data/output/scripts/

5.4.3. Examine the output files

Note

The following commands will vary depending on what APPL or domain decomposition was run

cd /fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic
ls -lht

output:

total 26G
drwxrwxr-x 2 ubuntu ubuntu 153K Jul 12 20:59 LOGS
-rw-rw-r-- 1 ubuntu ubuntu 2.3M Jul 12 20:59 CCTM_BUDGET_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.txt
-rw-rw-r-- 1 ubuntu ubuntu 4.1G Jul 12 20:59 CCTM_CGRID_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 1.9G Jul 12 20:58 CCTM_AELMO_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 2.8G Jul 12 20:58 CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 171M Jul 12 20:58 CCTM_CONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 1.8G Jul 12 20:58 CCTM_WETDEP1_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 2.1G Jul 12 20:58 CCTM_DRYDEP_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 51M Jul 12 20:58 CCTM_MEDIA_CONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 15M Jul 12 20:58 CCTM_BSOILOUT_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.nc
-rw-rw-r-- 1 ubuntu ubuntu 3.7K Jul 12 20:30 CCTM_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171223.cfg
-rw-rw-r-- 1 ubuntu ubuntu 2.3M Jul 12 20:30 CCTM_BUDGET_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.txt
-rw-rw-r-- 1 ubuntu ubuntu 4.1G Jul 12 20:30 CCTM_CGRID_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 2.8G Jul 12 20:29 CCTM_ACONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 1.9G Jul 12 20:29 CCTM_AELMO_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 171M Jul 12 20:29 CCTM_CONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 1.8G Jul 12 20:29 CCTM_WETDEP1_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 51M Jul 12 20:29 CCTM_MEDIA_CONC_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 15M Jul 12 20:29 CCTM_BSOILOUT_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 2.1G Jul 12 20:29 CCTM_DRYDEP_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.nc
-rw-rw-r-- 1 ubuntu ubuntu 3.7K Jul 12 20:00 CCTM_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_3x64_classic_20171222.cfg

Check disk space

 du -sh
26G .

5.4.4. Copy the output to an S3 Bucket

Examine the example script

cd /shared/pcluster-cmaq/s3_scripts
cat s3_upload.c7g.16xlarge.csh

output:

#!/bin/csh -f
Script to upload output data to S3 bucket
NOTE: a new bucket needs to be created to store each set of cluster runs

#cd /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts
#cp run*.log /fsx/data/output
#cp run*.csh /fsx/data/output

aws s3 mb s3://c7g-head-hpc7g.16xlarge-cmaqv5.4plus.12us1-output
aws s3 cp --recursive /fsx/data/output/ s3://c7g-head-hpc7g.16xlarge-cmaqv5.4plus.12us1-output/jul-14-2023/fsx/data/output/

If you do not have permissions to write to the s3 bucket, you may need to ask the administrator of your account to add S3 Bucket writing permissions.

Run the script to copy all of the CMAQ output and logs to the S3 bucket.

./s3_upload.c7g.16xlarge.csh

 6. Logout and Delete ParallelCluster

6. Logout and Delete ParallelCluster

Logout and delete the ParallelCluster when you are done to avoid incurring costs.

	6.1. Logout of cluster when you are done

	6.2. Delete Cluster

	6.3. Verify that the cluster was deleted

 6.1. Logout of cluster when you are done

6.1. Logout of cluster when you are done

To avoid incurring costs for the lustre file system and the c5n.xlarge compute node, it is best to delete the cluster after you have copied the output data to the S3 Bucket.

If you are logged into the Parallel Cluster then use the following command

exit

6.2. Delete Cluster

Run the following command on your local computer.

pcluster delete-cluster --region=us-east-1 --cluster-name cmaq

6.3. Verify that the cluster was deleted

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

"lastUpdatedTime": "2022-02-25T20:17:19.263Z",
 "region": "us-east-1",
 "clusterStatus": "DELETE_IN_PROGRESS"

Verify that you see the following output

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq
{
 "message": "Cluster 'cmaq' does not exist or belongs to an incompatible ParallelCluster major version."
}

 7. Additional Resources

7. Additional Resources

For a tutorial that explains cloud terminology as well as how to obtain single EC2 instances for running GEOS-CHEM on a single node, please see
the Beginner Tutorial provided by GEOS-Chem as well as the resources in this chapter.

	7.1. FAQ

	7.2. Free Training

	7.3. Another workshop to learn the AWS CLI 3.0

	7.4. Youtube video

	7.5. Intro to AWS for HPC People - HPC Tech Shorts

	7.6. Benchmarking

	7.7. Help Resources for CMAQ

	7.8. Computing on the Cloud References
	7.8.1. AWS High Performance Computing (HPC) Lens for the AWS Well-Architected Framework

	7.8.2. HPC on AWS - WRF (uses cfnCluster - older version of Parallel Cluster

	7.8.3. WRF on Parallel Cluster

	7.8.4. Advancing Large Scale Weather and Climate Modeling Data in the Cloud

	7.8.5. AWS Well-Architected Framework

	7.8.6. Cost Comparison on-premisis and cloud

	7.9. AWS Resources for the aws cli method to launch ec2 instances.

	7.10. Resources from AWS for diagnosing issues with running the Parallel Cluster
	7.10.1. Issues

	7.10.2. Tips to managing the parallel cluster

	7.11. Instructions on how to create Parallel Cluster Amazon Machine Image (AMI) from the command line

	7.12. ParallelCluster Update

	7.13. Use Elastic Fabric Adapter/Elastic Network Adapter for better performance

	7.14. VPC Management
	7.14.1. Deleting VPCs

	7.15. Using Cost Allocation Tags with ParallelCluster

 7.1. FAQ

7.1. FAQ

Q. Can you update a cluster with a Snapshot ID, ie. update a cluster to use the /shared/build pre-installed software?

A. No. An existing cluster can not be updated with a Snapshot ID, solution is to delete the cluster and re-create it. see error:

pcluster update-cluster --region us-east-1 --cluster-name cmaq --cluster-configuration c5n-18xlarge.ebs_unencrypted.fsx_import.yaml

Output:

{
 "message": "Update failure",
 "updateValidationErrors": [
 {
 "parameter": "SharedStorage[ebs-shared].EbsSettings.SnapshotId",
 "requestedValue": "snap-065979e115804972e",
 "message": "Update actions are not currently supported for the 'SnapshotId' parameter. Remove the parameter 'SnapshotId'. If you need this change, please consider creating a new cluster instead of updating the existing one."
 }
],
 "changeSet": [
 {
 "parameter": "SharedStorage[ebs-shared].EbsSettings.SnapshotId",
 "requestedValue": "snap-065979e115804972e"
 }
]
}

Q. How do you figure out why a job isn’t successfully running in the slurm queue?

A. Check the logs available in the following link

Pcluster Troubleshooting

vi /var/log/parallelcluster/slurm_resume.log

Output:

2022-03-23 21:04:23,600 - [slurm_plugin.instance_manager:_launch_ec2_instances] - ERROR - Failed RunInstances request: 0c6422af-c300-4fe6-b942-2b7923f7b362
2022-03-23 21:04:23,600 - [slurm_plugin.instance_manager:add_instances_for_nodes] - ERROR - Encountered exception when launching instances for nodes (x3) ['queue1-dy-compute-resource-1-4', 'queue1-dy-compute-resource-1-5', 'queue1-dy-compute-resource-1-6']: An error occurred (InsufficientInstanceCapacity) when calling the RunInstances operation (reached max retries: 1): We currently do not have sufficient c5n.18xlarge capacity in the Availability Zone you requested (us-east-1a). Our system will be working on provisioning additional capacity. You can currently get c5n.18xlarge capacity by not specifying an Availability Zone in your request or choosing us-east-1b, us-east-1c, us-east-1d, us-east-1f.

Q. How do I determine what node(s) the job is running on?

A. echo $SLURM_JOB_NODELIST

Slurm Environment Variables

Q. I see other tutorials that use a configure file instead of a yaml file to create the cluster. Can I use this instead?

A. No, you must convert the text based config file to a yaml file to use with the Parallel Cluster CLI 3.+ version used in this tutorial.
An example of this type of tutorial is < a href=”https://aws.amazon.com/blogs/compute/fire-dynamics-simulation-cfd-workflow-using-aws-parallelcluster-elastic-fabric-adapter-amazon-fsx-for-lustre-and-nice-dcv/”> Fire Dynamics Simulation CFD workflow using AWS ParallelCluster, Elastic Fabric Adapter, Amazon FSx for Lustre and NICE DCV

 7.2. Free Training

7.2. Free Training

Numerical Weather Prediction HPC Workship

 7.7. Help Resources for CMAQ

7.7. Help Resources for CMAQ

	CMAS Center Forum

	EPA CMAQ Website

	UNC CMAS Center Website

 7.8. Computing on the Cloud References

7.8. Computing on the Cloud References

WRF Cloud Computing Paper

7.8.1. AWS High Performance Computing (HPC) Lens for the AWS Well-Architected Framework

AWS High Performance Computing (HPC) Lens for the AWS Well-Architected Framework

7.8.2. HPC on AWS - WRF (uses cfnCluster - older version of Parallel Cluster

HPC on AWS

7.8.3. WRF on Parallel Cluster

A Scientist Guide to Cloud-HPC: Example with AWS ParallelCluster, Slurm, Spack, and WRF

7.8.4. Advancing Large Scale Weather and Climate Modeling Data in the Cloud

AWS and Intel Research Webinar Series: Advancing the large scale weather and climate modeling data in the cloud

7.8.5. AWS Well-Architected Framework

AWS Well-Architected Framework

7.8.6. Cost Comparison on-premisis and cloud

WRF Performance on Google Cloud

Comparing on-premise and cloud costs for hpc

 7.9. AWS Resources for the aws cli method to launch ec2 instances.

7.9. AWS Resources for the aws cli method to launch ec2 instances.

aws cli examples

aws cli run instances command

Tutorial Launch Spot Instances

Launching EC2 Spot Instances using Run Instances API

Additional resources for spot instance provisioning.

Spot Instance Requests

 7.10. Resources from AWS for diagnosing issues with running the Parallel Cluster

7.10. Resources from AWS for diagnosing issues with running the Parallel Cluster

	Github for AWS Parallel Cluster

	User Guide

	Getting Started Guide

	Guide to obtaining AWS Key Pair

	Lustre FAQ

	Parallel Cluster FAQ (somewhat outdated..)

	Tool to convert v2 config files to v3 yaml files for Parallel Cluster

	Instructions for creating a fault tolerance parallel cluster using lustre filesystem

	AWS HPC discussion forum

7.10.1. Issues

For AWS Parallel Cluster you can create a GitHub issue for feedback or issues: Github Issues
There is also an active community driven Q&A site that may be helpful: AWS re:Post a community-driven Q&A site

7.10.2. Tips to managing the parallel cluster

	The head node can be stopped from the AWS Console after stopping compute nodes of the cluster, as long as it is restarted before issuing the command to restart the cluster.

	The pcluster slurm queue system will create and delete the compute nodes, so that helps reduce manual cleanup for the cluster.

	The compute nodes are terminated after they have been idle for a period of time. The yaml setting used for this is as follows: SlurmSettings: ScaledownIdletime: 5

	The default idle time is 10 minutes, and can be reduced by specifing a shorter idle time in the YAML file. It is important to verify that the are deleted after a job is finished, to avoid incurring unexpected costs.

	copy/backup the outputs and logs to an s3 bucket for follow-up analysis

	After copying output and log files to the s3 bucket the cluster can be deleted

	Once the pcluster is deleted all of the volumes, head node, and compute node will be terminated, and costs will only be incurred by the S3 Bucket storage.

 7.11. Instructions on how to create Parallel Cluster Amazon Machine Image (AMI) from the command line

7.11. Instructions on how to create Parallel Cluster Amazon Machine Image (AMI) from the command line

Tutorial How-to Create AMI from Command Line

We also need to have additional protections if we make these AMI’s public.

Building Shared AMIs

Securing Access to AMIs for AWS Marketplace

Building Pcluster from Existing AMI

 7.12. ParallelCluster Update

7.12. ParallelCluster Update

	not all settings in the yaml file can be updated

	it is important to know what the policy is for each setting

Example Update policy:

If this setting is changed, the update is not allowed.
After changing this setting, the cluster can’t be updated.
Either the change must be reverted or the cluster must be deleted (using pcluster delete-cluster), and then a new cluster created (using pcluster create-cluster) in the old cluster’s place.

see more information

ParallelCluster Update Policy

 7.13. Use Elastic Fabric Adapter/Elastic Network Adapter for better performance

7.13. Use Elastic Fabric Adapter/Elastic Network Adapter for better performance

“In order to make the most of the available network bandwidth, you need to be using the latest Elastic Network Adapter (ENA) drivers (available in the latest Amazon Linux, Red Hat 7.6, and Ubuntu AMIs, and in the upstream Linux kernel) and you need to make use of multiple traffic flows. Flows within a Placement Group can reach 10 Gbps; the rest can reach 5 Gbps. When using multiple flows on the high-end instances, you can transfer 100 Gbps between EC2 instances in the same region (within or across AZs), S3 buckets, and AWS services such as Amazon Relational Database Service (RDS), Amazon ElastiCache, and Amazon EMR.”

The above was quoted from the following link:

C5n Instances

Elastic Fabric Adapter for HPC systems

“EFA is currently available on c5n.18xlarge, c5n.9xlarge, c5n.metal, i3en.24xlarge, i3en.metal, inf1.24xlarge, m5dn.24xlarge, m5n.24xlarge, r5dn.24xlarge, r5n.24xlarge, p3dn.24xlarge, p4d, m6i.32xlarge, m6i.metal, c6i.32xlarge, c6i.metal, r6i.32xlarge, and r6i.metal instances.”

What are the differences between an EFA ENI and an ENA ENI?

“An ENA ENI provides traditional IP networking features necessary to support VPC networking. An EFA ENI provides all the functionality of an ENA ENI, plus hardware support for applications to communicate directly with the EFA ENI without involving the instance kernel (OS-bypass communication) using an extended programming interface. Due to the advanced capabilities of the EFA ENI, EFA ENIs can only be attached at launch or to stopped instances.”

Q: What are the pre-requisites to enabling EFA on an instance?

“EFA support can be enabled either at the launch of the instance or added to a stopped instance. EFA devices cannot be attached to a running instance.”

Elastic Fabric Adapter for Tightly Coupled Workloads

Quoted from the above link.

“An EFA can still handle IP traffic, but also supports an important access model commonly called OS bypass. This model allows the application (most commonly through some user-space middleware) access the network interface without having to get the operating system involved with each message. Doing so reduces overhead and allows the application to run more efficiently. Here’s what this looks like (source):”

“The MPI Implementation and libfabric layers of this cake play crucial roles:”

“MPI – Short for Message Passing Interface, MPI is a long-established communication protocol that is designed to support parallel programming. It provides functions that allow processes running on a tightly-coupled set of computers to communicate in a language-independent way.”

“libfabric – This library fits in between several different types of network fabric providers (including EFA) and higher-level libraries such as MPI. EFA supports the standard RDM (reliable datagram) and DGRM (unreliable datagram) endpoint types; to learn more, check out the libfabric Programmer’s Manual. EFA also supports a new protocol that we call Scalable Reliable Datagram; this protocol was designed to work within the AWS network and is implemented as part of our Nitro chip.”

“Working together, these two layers (and others that can be slotted in instead of MPI), allow you to bring your existing HPC code to AWS and run it with little or no change.

“You can use EFA today on c5n.18xlarge and p3dn.24xlarge instances in all AWS regions where those instances are available. The instances can use EFA to communicate within a VPC subnet, and the security group must have ingress and egress rules that allow all traffic within the security group to flow. Each instance can have a single EFA, which can be attached when an instance is started or while it is stopped.”

“You will also need the following software components:”

“EFA Kernel Module – The EFA Driver is in the Amazon GitHub repo; read Getting Started with EFA to learn how to create an EFA-enabled AMI for Amazon Linux, Amazon Linux 2, and other popular Linux distributions.”

“Libfabric Network Stack – You will need to use an AWS-custom version for now; again, the Getting Started document contains installation information. We are working to get our changes into the next release (1.8) of libfabric.”

“Note the parallel cluster deplopyment takes care of setting this up for you.”

 7.14. VPC Management

7.14. VPC Management

There is a limit on the number of VPCs that are allowed per account - limit is 5.

What is the difference between a private and a public vpc? (what setting is used in the yaml file, and why is one preferred over the other?)

Note, there is a default VPC, that is used to create EC2 instances, that should not be deleted.

Q1. is there a separate default VPC for each region?

Q2. Each time you run a configure cluster command, does the ParallelCluster create a new VPC?

Q3. Why don’t the VPC and subnet IDs get deleted when the ParallelClusters are deleted?

7.14.1. Deleting VPCs

If pcluster configure created a new VPC, you can delete that VPC by deleting the AWS CloudFormation stack it created. The name will start with “parallelclusternetworking-” and contain the creation time in a “YYYYMMDDHHMMSS” format. You can list the stacks using the list-stacks command.
The following instructions are available here:

Instructions for Cleaning Up VPCs

$ aws --region us-east-2 cloudformation list-stacks \
 --stack-status-filter "CREATE_COMPLETE" \
 --query "StackSummaries[].StackName" | \
 grep -e "parallelclusternetworking-""parallelclusternetworking-pubpriv-20191029205804"

The stack can be deleted using the delete-stack command.

$ aws --region us-west-2 cloudformation delete-stack \
 --stack-name parallelclusternetworking-pubpriv-20191029205804

If pcluster configure created a new VPC, you can delete that VPC by deleting the AWS CloudFormation stack it created.
The name will start with “parallelclusternetworking-” and contain the creation time in a “YYYYMMDDHHMMSS” format. You can list the stacks using the list-stacks command.

Pcluster Configure

Note: I can see why you wouldn’t want to delete the VPC, if you want to reuse the yaml file that contains the SubnetID that is tied to that VPC.

I was able to use the Amazon Website to find the SubnetID, and then identify the VPC that it is part of.

I currently have the following VPCs

	Name

	VPC ID

	State

	IPv4 CIDR

	IPv6 CIDR (Network border group)

	IPv6 pool

	DHCP options set

	Main route table

	Main network ACL

	Tenancy

	Default VPC

	Owner ID

	ParallelClusterVPC-20211210200003

	vpc-0445c3fa089b004d8

	Available

	10.0.0.0/16

	–

	–

	dopt-eaeaf888

	rtb-048c503f3e6b9acc3

	acl-0fecfa7ff42e04ead

	Default

	No

	xxxx

	ParallelClusterVPC-20211021183813

	vpc-00e3f4e34aaf80f06

	Available

	10.0.0.0/16

	–

	–

	dopt-eaeaf888

	rtb-0a5b7ac9873486bcb

	acl-0852d06b1170db68c

	Default

	No

	xxxx

	-

	vpc-3cfc5759

	Available

	172.31.0.0/16

	–

	–

	dopt-eaeaf888

	rtb-99cd64fc

	acl-bb9b39de

	Default

	Yes

	440858712842

	ParallelClusterVPC-20210419174552

	vpc-0ab948b66554c71ea

	Available

	10.0.0.0/16

	–

	–

	dopt-eaeaf888

	rtb-03fd47f05eac5379f

	acl-079fe1be7ff972858

	Default

	No

	xxxx

	ParallelClusterVPC-20211021174405

	vpc-0f34a572da1515e49

	Available

	10.0.0.0/16

	–

	–

	dopt-eaeaf888

	rtb-0b6310d9ea70a699e

	acl-01fa1529b65545e91

	Default

	No

	xxxx

This is the subnet id that I am currently using in the yaml files: subnet-018cfea3edf3c4765

I currently have 11 subnet IDs - how many are no longer being used?

	Name

	Subnet ID

	State

	VPC

	IPv4 CIDR

	IPv6 CIDR

	Available IPv4 addresses

	Availability Zone

	Availability Zone ID

	Network border group

	Route table

	Network ACL

	Default subnet

	Auto-assign public IPv4 address

	Auto-assign customer-owned IPv4 address

	Customer-owned IPv4 pool

	Auto-assign IPv6 address

	Owner ID

	parallelcluster:public-subnet

	subnet-018cfea3edf3c4765

	Available

	vpc-0445c3fa089b004d8-ParallelClusterVPC-20211210200003

	10.0.0.0/20

	–

	4091

	us-east-1a

	use1-az6

	us-east-1

	rtb-034bcab9e4b8c4023-parallelcluster:route-table-public

	acl-0fecfa7ff42e04ead

	No

	Yes

	No

	-

	No

	xx

 7.15. Using Cost Allocation Tags with ParallelCluster

7.15. Using Cost Allocation Tags with ParallelCluster

This blog post uses the v2 command line
Using Cost Allocation Tags

Need to update instructions for AWS v3 CLI - using yaml files.

 8. Future Work

8. Future Work

	8.1. Future Work

 8.1. Future Work

8.1. Future Work

AWS ParallelCluster

	Create yaml and software install scripts for intel compiler

	Benchmark 2 day case using intel compiler version of CMAQ and compare to GCC timings

	Repeat Benchmark Runs using c6gn.16xlarge compute nodes AMD Graviton and compare to Azure Cycle Cloud HBV3 compute nodes.

	Create script for installing all software and R packages as a custom bootstrap as the ParallelCluster is created.

	Create method to automatically checkpoint and save a job prior to it being bumped from the schedule if running on spot instances.

	Set up an additional slurm queue that uses a smaller compute node to do the post-processing and learn how to submit the post processing jobs to this queue, rather than running them on the head node.

	Install software using SPACK

	Install netCDF-4 compressed version of I/O API Library and set up environment module to compile and run CMAQ for 2018_12US1 data that is nc4 compressed

Documentation

	Create instructions on how to create a ParallelCluster using encrypted ebs volume and snapshot.

 9. Contribute to this Tutorial

9. Contribute to this Tutorial

The community is encouraged to contribute to this documentation.
It is open source, created by the CMAS Center, under contract to EPA, for the benefit of the CMAS Community.

	9.1. Contribute to Pcluster-cmaq Documentation

 9.1. Contribute to Pcluster-cmaq Documentation

9.1. Contribute to Pcluster-cmaq Documentation

Please take note of any issues and submit to Github Issue

Note

At the top of each page of the documentation, there is also an pencil icon, that you can click.
It will create a fork of the project on your github account that you can make edits and then submit a pull request.

[image: Figure with Pencil: Edit this Page Icon]

If you are able to create a pull request, please include the following in your issue:

	pull request number

If you are not able to create a pull request, please include the following in your issue:

	section number

	description of the issue encountered

	recommended fix, if available

 Index

Index

 license information

license information

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

 <no title>

 4/15/2022 - Release to Cloud Computing Workgroup

 Screen code prior to committing to git repo

Screen code prior to committing to git repo

To prevent committing passwords and other sensitive information to the git repository

git-secrets

after installing run the following command prior to making commits to the git repo

git secrets --scan

For documentation purposes, it is best practice to set up a profile, and use that in the document.

Configure Named Profiles

 Side by Side Comparison of the information in the log files for 12x9 pe run compared to 9x12 pe run.

Side by Side Comparison of the information in the log files for 12x9 pe run compared to 9x12 pe run.

cd /shared/pcluster-cmaq/c5n.18xlarge_scripts_logs

sdiff run_cctmv5.3.3_Bench_2016_12US2.108.12x9pe.2day.pcluster.log run_cctmv5.3.3_Bench_2016_12US2.108.9x12pe.2day.pcluster.log | more

Output:

Start Model Run At Fri Feb 25 20:48:42 UTC 2022	 |	Start Model Run At Thu Feb 24 01:04:42 UTC 2022
information about processor including whether using hyperthre	information about processor including whether using hyperthre
Architecture: x86_64				Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit			CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian			Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits vi	Address sizes: 46 bits physical, 48 bits vi
CPU(s): 36				CPU(s): 36
On-line CPU(s) list: 0-35				On-line CPU(s) list: 0-35
Thread(s) per core: 1				Thread(s) per core: 1
Core(s) per socket: 18				Core(s) per socket: 18
Socket(s): 2				Socket(s): 2
NUMA node(s): 2				NUMA node(s): 2
Vendor ID: GenuineIntel			Vendor ID: GenuineIntel
CPU family: 6				CPU family: 6
Model: 85				Model: 85
Model name: Intel(R) Xeon(R) Platinum 81	Model name: Intel(R) Xeon(R) Platinum 81
Stepping: 4				Stepping: 4
CPU MHz: 2887.020		 |	CPU MHz: 2999.996
BogoMIPS: 5999.98		 |	BogoMIPS: 5999.99
Hypervisor vendor: KVM				Hypervisor vendor: KVM
Virtualization type: full				Virtualization type: full
L1d cache: 1.1 MiB			L1d cache: 1.1 MiB
L1i cache: 1.1 MiB			L1i cache: 1.1 MiB
L2 cache: 36 MiB				L2 cache: 36 MiB
L3 cache: 49.5 MiB			L3 cache: 49.5 MiB
NUMA node0 CPU(s): 0-17				NUMA node0 CPU(s): 0-17
NUMA node1 CPU(s): 18-35				NUMA node1 CPU(s): 18-35

 ===		 ===
 |>--- ENVIRONMENT VARIABLE REPORT ---<|		 |>--- ENVIRONMENT VARIABLE REPORT ---<|
 ===		 ===

 |> Grid and High-Level Model Parameters:			 |> Grid and High-Level Model Parameters:
 +===			 +===
 --Env Variable-- | --Value--				 --Env Variable-- | --Value--
 ---	 ---
 BLD | (default)			 BLD | (default)
 OUTDIR | /fsx/data/output/output_CCTM_v533_gcc_20 |	 OUTDIR | /fsx/data/output/output_CCTM_v533_gcc_20
 NEW_START | T					 NEW_START | T
 ISAM_NEW_START | Y (default)				 ISAM_NEW_START | Y (default)
 GRID_NAME | 12US2					 GRID_NAME | 12US2
 CTM_TSTEP | 10000					 CTM_TSTEP | 10000
 CTM_RUNLEN | 240000					 CTM_RUNLEN | 240000
 CTM_PROGNAME | DRIVER (default)				 CTM_PROGNAME | DRIVER (default)
 CTM_STDATE | 2015356					 CTM_STDATE | 2015356
 CTM_STTIME | 0					 CTM_STTIME | 0
 NPCOL_NPROW | 12 9				 |	 NPCOL_NPROW | 9 12
 CTM_MAXSYNC | 300					 CTM_MAXSYNC | 300

==================================				==================================
 ***** CMAQ TIMING REPORT *****				 ***** CMAQ TIMING REPORT *****
==================================				==================================
Start Day: 2015-12-22						Start Day: 2015-12-22
End Day: 2015-12-23						End Day: 2015-12-23
Number of Simulation Days: 2					Number of Simulation Days: 2
Domain Name: 12US2				Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)		Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35					Number of Layers: 35
Number of Processes: 108					Number of Processes: 108
 All times are in seconds.					 All times are in seconds.

Num Day Wall Time					Num Day Wall Time
01 2015-12-22 2758.01				 |	01 2015-12-22 2454.11
02 2015-12-23 2370.92				 |	02 2015-12-23 2142.11
 Total Time = 5128.93				 |	 Total Time = 4596.22
 Avg. Time = 2564.46				 |	 Avg. Time = 2298.11

 <no title>

Note

Additional best practice of allowing the ParallelCluster to create a placement group.
Network Performance
Placement Groups

This is specified in the yaml file in the slurm queue’s network settings.

Networking:
 PlacementGroup:
 Enabled: true

Note

To provide the lowest latency and the highest packet-per-second network performance for your placement group, choose an instance type that supports enhanced networking. For more information, see Enhanced Networking.
Enhanced Networking (ENA)

To measure the network performance, you can use iPerf to measure network bandwidth.

Iperf

Note

Elastic Fabric Adapter(EFA)
“EFA provides lower and more consistent latency and higher throughput than the TCP transport traditionally used in cloud-based HPC systems. It enhances the performance of inter-instance communication that is critical for scaling HPC and machine learning applications. It is optimized to work on the existing AWS network infrastructure and it can scale depending on application requirements.” “An EFA is an Elastic Network Adapter (ENA) with added capabilities. It provides all of the functionality of an ENA, with an additional OS-bypass functionality. OS-bypass is an access model that allows HPC and machine learning applications to communicate directly with the network interface hardware to provide low-latency, reliable transport functionality.”
Elastic Fabric Adapter(EFA)

Note

Nitro Hypervisor
“AWS Nitro System is composed of three main components: Nitro cards, the Nitro security chip, and the Nitro hypervisor. Nitro cards provide controllers for the VPC data plane (network access), Amazon Elastic Block Store (Amazon EBS) access, instance storage (local NVMe), as well as overall coordination for the host. By offloading these capabilities to the Nitro cards, this removes the need to use host processor resources to implement these functions, as well as offering security benefits. “
Bare metal performance with the Nitro Hypervisor

EC2 Nitro Instances Available

Importing data from S3 Bucket to Lustre

Justification for using the capability of importing data from an S3 bucket to the lustre file system over using elastic block storage file system and copying the data from the S3 bucket for the input and output data storage volume on the cluster.

	Saves storage cost

	Removes need to copy data from S3 bucket to Lustre file system. FSx for Lustre integrates natively with Amazon S3, making it easy for you to process HPC data sets stored in Amazon S3

	Simplifies running HPC workloads on AWS

	Amazon FSx for Lustre uses parallel data transfer techniques to transfer data to and from S3 at up to hundreds of GB/s.

See also

Lustre FAQs
Lustre Performance Documentation

Note

To find the default settings for Lustre see:
Lustre Settings for ParallelCluster

 System Requirements

System Requirements

Description of the ec2 instance type used for Single VM and for the head node and compute node for the Parallel Cluster

	Configurations for running CMAQ on a Single VM or ParallelCluster

	Sign up for an Amazon Web Services (AWS) Account

	Software Requirements for CMAQ on AWS Single VM or ParallelCluster

	Single VM Configuration for 12US1 Benchmark Domain

	ParallelCluster Configuration for 12US1 Benchmark Domain

 Configurations for running CMAQ on a Single VM or ParallelCluster

Configurations for running CMAQ on a Single VM or ParallelCluster

Note

The tutorials presented here, require an AWS account, which requires a credit card. If you are diligent in terminating the resources created in this tutorial after you run the benchmark, the cost should be less than $15. Performance and Cost Optimization tables are provided in Chapter 5.

Sign up for an Amazon Web Services (AWS) Account

From the Amazon Web Services website, http://aws.amazon.com, click on “Create an AWS account” on the upper right corner. After you have an account it will say “Sign into the Console”.

We highly recommend that users set up a spending alarm to help manage costs. You can configure alarm to receive an email alert if you exceed a specific dollar amount, e.g., $100 per month.

See also

See the AWS Tutorial on setting up an alarm for AWS Free Tier:
AWS Free Tier Budgets

Software Requirements for CMAQ on AWS Single VM or ParallelCluster

Tier 1: Native OS and associated system libraries, compilers

	Operating System: Ubuntu2004

	Tcsh shell

	Git

	Compilers (C, C++, and Fortran) - GNU compilers version ≥ 8.3

	MPI (Message Passing Interface) - OpenMPI ≥ 4.0

	Slurm Scheduler

Tier 2: additional libraries required for installing CMAQ

	NetCDF (with C, C++, and Fortran support)

	I/O API

Tier 3: Software developed by EPA and distributed through the CMAS Center

	CMAQv5.4+

	CMAQv5.4+ Post Processors

	R code for QAing model ouput

Software on Local Computer

	AWS ParallelCluster CLI v3.0 installed in a virtual environment

	Text editors for editing scripts and configuration files (e.g., vi, nedit)

	Git

	Mac - XQuartz for X11 Display

	Windows - MobaXterm - to connect to ParallelCluster IP address

Note

When working on the AWS Cloud you will need to select a Region for your workloads. (See AWS blog on What to consider when selecting a region). The scripts used in this tutorial use the us-east-1 region, but they can be modified to use any of the supported regions listed here:
CLI v3 Supported Regions

Single VM Configuration for 12US1 Benchmark Domain

	c6a.48xlarge - (96 cpus/node with Multithreading disabled) with 384 GiB memory, 50 Gigabit Network Bandwidth, 40 EBS Bandwidth (Gbps), Elastic Fabric Adapter (EFA) and Nitro Hypervisor. (available in any region)

	Name

	vCPUs

	cores

	Memory (GiB)

	Network Bandwidth (Gbps)

	EBS Throughput (Gbps)

	c6a.2xlarge

	8

	4

	16

	Up to 12.5

	Up to 6.6

	c6a.8xlarge

	32

	16

	64

	12.5

	6.6

	c6a.48xlarge

	192

	96

	384

	50

	40

or

	hpc6a.48xlarge (96 cpus/node) with 384 GiB memory, using two 48-core 3rd generation AMD EPYC 7003 series processors built on 7nm process nodes for increased efficiency with a total of 96 cores (4 GiB of memory per core), Elastic Fabric Adapter (EFA) and Nitro Hypervisor (lower cost than c6a.48xlarge) only available in us-east-2 region

	Name

	cores

	Memory (GiB)

	EFA Network Bandwidth (Gbps)

	Network Bandwidth(Gbps)

	Hpc6a.48xlarge

	96

	384

	100

	25

ParallelCluster Configuration for 12US1 Benchmark Domain

Note

It is recommended to use a head node that is in the same family a the compute node so that the compiler options and executable is optimized for that processor type.

There are two recommended configuration of the ParallelCluster HPC head node and compute nodes to run the CMAQ CONUS benchmark for two days:

First configuration:

Head node:

	c6a.xlarge

(note that head node should match the processor family of the compute nodes)

Compute Node:

	hpc6a.48xlarge (96 cpus/node) with 384 GiB memory, using two 48-core 3rd generation AMD EPYC 7003 series processors built on 7nm process nodes for increased efficiency with a total of 96 cores (4 GiB of memory per core), Elastic Fabric Adapter (EFA) and Nitro Hypervisor (lower cost than c6a.48xlarge) only available in us-east-2 region

or (more costly option, but available in all regions)

	c6a.48xlarge (96 cpus/node with Multithreading disabled)
with 384 GiB memory, 50 Gigabit Network Bandwidth, 40 EBS Bandwidth (Gbps), Elastic Fabric Adapter (EFA) and Nitro Hypervisor

HPC6a EC2 Instance

Note

CMAQ is developed using OpenMPI and can take advantage of increasing the number of CPUs and memory.
ParallelCluster provides a ready-made auto scaling solution.

Figure 1. AWS Recommended ParallelCluster Configuration (Number of compute nodes depends on setting for NPCOLxNPROW and #SBATCH –nodes=XX #SBATCH –ntasks-per-node=YY)

[image: AWS ParallelCluster Configuration]

Second configuration (Least expensive - see chapter on Cost and Performance Optimization):

Head node:

	c7g.large

(note that head node should match the processor family of the compute nodes)

Compute Node:

	hpc7g.16xlarge (64 cores/node) with 128 GiB memory (2 GiB of memory per core), Arm-based custom Graviton3E processors, which provide Double Data Rate 5 (DDR5) memory that offers 50% more bandwidth compared to DDR4, Elastic Fabric Adapter (EFA) and Nitro Hypervisor only available in us-east-1 region

HPC7g EC2 Instance

[image: AWS ParallelCluster Configuration]

 Use ParallelCluster pre-installed with CMAQv5.3.3 software and 12US2 Benchmark

 CMAQv5.3.3 CONUS 2 Benchmark Tutorial using 12US2 Domain

Use ParallelCluster pre-installed with CMAQv5.3.3 software and 12US2 Benchmark

Step by step instructions for running the CMAQ 12US2 Benchmark for 2 days on a ParallelCluster.

Obtain YAML file pre-loaded with input data and software

Choose a directory on your local machine to obtain a copy of the github repo.

cd /your/local/machine/install/path/

Use a configuration file from the github by cloning the repo to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq/yaml

Note

To find the default settings for Lustre see:
Lustre Settings for ParallelCluster

Examine Diagram of the YAML file to build pre-installed software and input data.

Includes Snapshot ID of volume pre-installed with CMAQ software stack and name of S3 Bucket to import data to the Lustre Filesystem

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c5n.large head node and c5n.18xlarge compute nodes with Software and Data Pre-installed (linked on lustre filesystem)

[image: hpc6a-48xlarge Software+Data Pre-installed yaml configuration]

Edit Yaml file

This Yaml file specifies the /shared directory that contains the CMAQv5.3.3 and libraries, and the input data that will be imported from an S3 bucket to the /fsx lustre file system
Note, the following yaml file is using a hpc6a-48xlarge compute node, and is using ONDEMAND pricing.

Note

Edit the hpc6a.48xlarge.ebs_unencrypted_installed_public_ubuntu2004.ebs_200.fsx_import_east-2b.yaml file to specify your subnet-id and your keypair prior to creating the cluster
In order to obtain these subnet id you will need to run pcluster configure

pcluster configure -r us-east-2 --config hpc6a.48xlarge.ebs.fsx.us-east-2.yaml

Example of the answers that were used to create the yaml for this benchmark:

Allowed values for EC2 Key Pair Name:
1. xxx-xxx
2. xxx-xxx-xxx
EC2 Key Pair Name [xxx-xxx]: 1
Allowed values for Scheduler:
1. slurm
2. awsbatch
Scheduler [slurm]: 1
Allowed values for Operating System:
1. alinux2
2. centos7
3. ubuntu1804
4. ubuntu2004
Operating System [alinux2]: 4
Head node instance type [t2.micro]: c6a.xlarge
Number of queues [1]:
Name of queue 1 [queue1]:
Number of compute resources for queue1 [1]: 1
Compute instance type for compute resource 1 in queue1 [t2.micro]: hpc6a.48xlarge
The EC2 instance selected supports enhanced networking capabilities using Elastic Fabric Adapter (EFA). EFA enables you to run applications requiring high levels of inter-node communications at scale on AWS at no additional charge (https://docs.aws.amazon.com/parallelcluster/latest/ug/efa-v3.html).
Enable EFA on hpc6a.48xlarge (y/n) [y]: y
Maximum instance count [10]:
Enabling EFA requires compute instances to be placed within a Placement Group. Please specify an existing Placement Group name or leave it blank for ParallelCluster to create one.
Placement Group name []:
Automate VPC creation? (y/n) [n]: y
Allowed values for Availability Zone:
1. us-east-2b
Availability Zone [us-east-2b]:
Allowed values for Network Configuration:
1. Head node in a public subnet and compute fleet in a private subnet
2. Head node and compute fleet in the same public subnet
Network Configuration [Head node in a public subnet and compute fleet in a private subnet]: 2
Beginning VPC creation. Please do not leave the terminal until the creation is finalized
Creating CloudFormation stack...
Do not leave the terminal until the process has finished.
Status: parallelclusternetworking-pub-20230123170628 - CREATE_COMPLETE
The stack has been created.
Configuration file written to hpc6a.48xlarge.ebs.fsx.us-east-2.yaml
You can edit your configuration file or simply run 'pcluster create-cluster --cluster-configuration hpc6a.48xlarge.ebs.fsx.us-east-2.yaml --cluster-name cluster-name --region us-east-2' to create your cluster.

vi hpc6a.48xlarge.ebs_unencrypted_installed_public_ubuntu2004.ebs_200.fsx_import_east-2b.yaml

Output:

Region: us-east-2
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c6a.xlarge
 Networking:
 SubnetId: subnet-xx-xx-xx <<< replace subnetID
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your-key <<< replace keyname
 LocalStorage:
 RootVolume:
 Encrypted: false
Scheduling:
 Scheduler: slurm
 SlurmSettings:
 ScaledownIdletime: 5
 SlurmQueues:
 - Name: queue1
 CapacityType: ONDEMAND
 Networking:
 SubnetIds:
 - subnet-xx-xx-xxx <<< replace subnetID
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: hpc6a.48xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 EbsSettings:
 VolumeType: gp3
 Size: 500
 Encrypted: false
 SnapshotId: snap-0f9592e0ea1749b5b
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://cmas-cmaq-conus2-benchmark

Create CMAQ ParallelCluster with software/data pre-installed

pcluster create-cluster --cluster-configuration hpc6a.48xlarge.ebs_unencrypted_installed_public_ubuntu2004.ebs_200.fsx_import_east-2b.yaml --cluster-name cmaq --region us-east-2

Output:

{
 "cluster": {
 "clusterName": "cmaq",
 "cloudformationStackStatus": "CREATE_IN_PROGRESS",
 "cloudformationStackArn": "arn:aws:cloudformation:us-east-2:440858712842:stack/cmaq/6cfb1a50-6e99-11ec-8af1-0ea2256597e5",
 "region": "us-east-2",
 "version": "3.0.2",
 "clusterStatus": "CREATE_IN_PROGRESS"
 }
}

Check status again

pcluster describe-cluster --region=us-east-2 --cluster-name cmaq

Output:

{
 "creationTime": "2022-01-06T02:36:18.119Z",
 "version": "3.0.2",
 "clusterConfiguration": {
 "url": "
 },
 "tags": [
 {
 "value": "3.0.2",
 "key": "parallelcluster:version"
 }
],
 "cloudFormationStackStatus": "CREATE_IN_PROGRESS",
 "clusterName": "cmaq",
 "computeFleetStatus": "UNKNOWN",
 "cloudformationStackArn":
 "lastUpdatedTime": "2022-01-06T02:36:18.119Z",
 "region": "us-east-2",
 "clusterStatus": "CREATE_IN_PROGRESS"
}

Note, the snapshot image used is smaller than the EBS volume requested in the yaml file.
Therefore you will get a warning from Parallel Cluster:

pcluster create-cluster --cluster-configuration hpc6a.48xlarge.ebs_unencrypted_installed_public_ubuntu2004.ebs_200.fsx_import_east-2b.yaml --cluster-name cmaq --region us-east-2
{
 "cluster": {
 "clusterName": "cmaq",
 "cloudformationStackStatus": "CREATE_IN_PROGRESS",
 "cloudformationStackArn": "arn:aws:cloudformation:us-east-2:440858712842:stack/cmaq/276abf10-94fc-11ed-885c-02032a236214",
 "region": "us-east-2",
 "version": "3.1.2",
 "clusterStatus": "CREATE_IN_PROGRESS"
 },
 "validationMessages": [
 {
 "level": "WARNING",
 "type": "EbsVolumeSizeSnapshotValidator",
 "message": "The specified volume size is larger than snapshot size. In order to use the full capacity of the volume, you'll need to manually resize the partition according to this doc: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html"
 }
]
}

After 5-10 minutes, check the status again and recheck until you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Check status again

pcluster describe-cluster --region=us-east-2 --cluster-name cmaq

Output:

 "cloudFormationStackStatus": "CREATE_COMPLETE",
 "clusterName": "cmaq",
 "computeFleetStatus": "RUNNING",
 "cloudformationStackArn": "arn:aws:cloudformation:us-east-1:440858712842:stack/cmaq/3cd2ba10-c18f-11ec-9f57-0e9b4dd12971",
 "lastUpdatedTime": "2022-04-21T16:22:28.879Z",
 "region": "us-east-2",
 "clusterStatus": "CREATE_COMPLETE"

Start the compute nodes, if the computeFleetStatus is not set to RUNNING

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Log into the new cluster

Note

replace your-key.pem with your Key Name

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-2 --cluster-name cmaq

Resize the EBS Volume

To resize the EBS volume, you will need to login to the cluster and then run the following command:

sudo resize2fs /dev/nvme1n1

output:

resize2fs 1.45.5 (07-Jan-2020)
Filesystem at /dev/nvme1n1 is mounted on /shared; on-line resizing required
old_desc_blocks = 5, new_desc_blocks = 63
The filesystem on /dev/nvme1n1 is now 131072000 (4k) blocks long.

Change shell to use tcsh

sudo usermod -s /bin/tcsh ubuntu

Log out and then log back in to have the shell take effect.

Verify Software

The software is pre-loaded on the /shared volume of the ParallelCluster. The software was previously loaded and saved to the snapshot.

ls /shared/build

Create a .cshrc file by copying it from the git repo that is on /shared/pcluster-cmaq

cp /shared/pcluster-cmaq/install/dot.cshrc.pcluster ~/.cshrc

Source shell

csh

Load the modules

module avail

Output:

-- /usr/share/modules/modulefiles --
dot libfabric-aws/1.16.1amzn1.0 module-git module-info modules null openmpi/4.1.4 use.own

--- /opt/intel/mpi/2021.6.0/modulefiles --
intelmpi

Load the modules openmpi and libfabric

module load openmpi/4.1.4

module load libfabric-aws/1.16.1amzn1.0

Verify Input Data

The input data was imported from the S3 bucket to the lustre file system (/fsx).

cd /fsx/data/CMAQ_Modeling_Platform_2016/CONUS/12US2/

Notice that the data doesn’t take up much space, only the objects are loaded, the datasets will not be loaded to the /fsx volume until they are used either by the run scripts or using the touch command.

Note

More information about enhanced s3 integration for Lustre see:
Enhanced S3 integration with lustre

du -h

Output:

27K ./land
33K ./MCIP
28K ./emissions/ptegu
55K ./emissions/ptagfire
27K ./emissions/ptnonipm
55K ./emissions/ptfire_othna
27K ./emissions/pt_oilgas
26K ./emissions/inln_point/stack_groups
51K ./emissions/inln_point
28K ./emissions/cmv_c1c2_12
28K ./emissions/cmv_c3_12
28K ./emissions/othpt
55K ./emissions/ptfire
407K ./emissions
27K ./icbc
518K .

Change the group and ownership permissions on the /fsx/data directory

sudo chown ubuntu /fsx/data

sudo chgrp ubuntu /fsx/data

Create the output directory

mkdir -p /fsx/data/output

Examine CMAQ Run Scripts

The run scripts are available in two locations, one in the CMAQ scripts directory.

Another copy is available in the pcluster-cmaq repo.
Do a git pull to obtain the latest scripts in the pcluster-cmaq repo.

cd /shared/pcluster-cmaq

git pull

Copy the run scripts from the repo.
Note, there are different run scripts depending on what compute node is used. This tutorial assumes hpc6a-48xlarge is the compute node.

cp /shared/pcluster-cmaq/run_scripts/hpc6a_shared/*.pin.codemod.csh /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/

Note

The time that it takes the 2 day CONUS benchmark to run will vary based on the number of CPUs used, and the compute node that is being used, and what disks are used for the I/O (EBS or lustre).
The Benchmark Scaling Plot for hpc6a-48xlarge on fsx and shared (include here).

Examine how the run script is configured

head -n 30 /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctm_2016_12US2.576pe.6x96.24x24.pcluster.hpc6a.48xlarge.fsx.pin.codemod.csh

#!/bin/csh -f
For hpc6a.48xlarge (96 cpu)
works with cluster-ubuntu.yaml
data on /fsx directory
#SBATCH --nodes=6
#SBATCH --ntasks-per-node=96
#SBATCH --exclusive
#SBATCH -J CMAQ
#SBATCH -o /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctmv5.3.3_Bench_2016_12US2.hpc6a.48xlarge.576.6x96.24x24pe.2day.pcluster.fsx.pin.codemod.log
#SBATCH -e /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctmv5.3.3_Bench_2016_12US2.hpc6a.48xlarge.576.6x96.24x24pe.2day.pcluster.fsx.pin.codemod.log

Note

In this run script, slurm or SBATCH requests 6 nodes, each node with 96 pes, or 6x96 = 576 pes

Verify that the NPCOL and NPROW settings in the script are configured to match what is being requested in the SBATCH commands that tell slurm how many compute nodes to provision.
In this case, to run CMAQ using on 108 cpus (SBATCH –nodes=6 and –ntasks-per-node=69), use NPCOL=24 and NPROW=24.

grep NPCOL /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctm_2016_12US2.576pe.6x96.24x24.pcluster.hpc6a.48xlarge.fsx.pin.codemod.csh

Output:

 setenv NPCOL_NPROW "1 1"; set NPROCS = 1 # single processor setting
 @ NPCOL = 24; @ NPROW = 24
 @ NPROCS = $NPCOL * $NPROW
 setenv NPCOL_NPROW "$NPCOL $NPROW";

To run on the EBS Volume a code modification is required.

Note, we will use this modification when running on both lustre and EBS.

Copy the BLD directory with a code modification to wr_conc.F and wr_aconc.F to your directory.

cp -rp /shared/pcluster-cmaq/run_scripts/BLD_CCTM_v533_gcc_codemod /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/

Build the code by running the makefile

cd /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/BLD_CCTM_v533_gcc_codemod

Check to see you have the modules loaded

module list

openmpi/4.1.1 2) libfabric-aws/1.13.2amzn1.0

Run the Make command

make

Verify that the executable has been created

ls -lrt CCTM_v533.exe

Submit Job to Slurm Queue to run CMAQ on Lustre

cd /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/

sbatch run_cctm_2016_12US2.576pe.6x96.24x24.pcluster.hpc6a.48xlarge.fsx.pin.codemod.csh

Check status of run

squeue

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 1 queue1 CMAQ ubuntu PD 0:00 6 (BeginTime)

Successfully started run

squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 22:39 6 queue1-dy-compute-resource-1-[1-6]

Once the job is successfully running

Check on the log file status

grep -i 'Processing completed.' CTM_LOG_001*_gcc_2016*

Output:

 Processing completed... 6.5 seconds
 Processing completed... 6.5 seconds
 Processing completed... 6.5 seconds
 Processing completed... 6.5 seconds
 Processing completed... 6.4 seconds

Once the job has completed running the two day benchmark check the log file for the timings.

tail -n 5 run_cctmv5.3.3_Bench_2016_12US2.hpc6a.48xlarge.576.6x96.24x24pe.2day.pcluster.fsx.pin.codemod.2.log

Output:

Num Day Wall Time
01 2015-12-22 1028.33
02 2015-12-23 916.31
 Total Time = 1944.64
 Avg. Time = 972.32

Submit a run script to run on the EBS volume

To run on the EBS volume, you need to copy the input data from the s3 bucket to the /shared volume.
You don’t want to copy directly from the /fsx volume, as this will copy more files than you need. The s3 copy script below copies only two days worth of data from the s3 bucket.
If you copy from /fsx directory, you would be copying all of the files on the s3 bucket.

cd /shared/pcluster-cmaq/s3_scripts
./s3_copy_nosign_conus_cmas_opendata_to_shared.csh

Modify YAML and then Update Parallel Cluster.

Note, not all settings in the yaml file can be updated, for some settings, such as using a different snapshot, you will need to terminate this cluster and create a new one.

If you want to edit the yaml file to update a setting such as the maximum number of compute nodes available, use the following command to stop the compute nodes

pcluster update-compute-fleet --region us-east-2 --cluster-name cmaq --status STOP_REQUESTED

Edit the yaml file to modify MaxCount under ComputeResoureces, then update the cluster using the following command:

pcluster update-cluster --region us-east-2 --cluster-name cmaq --cluster-configuration hpc6a.48xlarge.ebs_unencrypted_installed_public_ubuntu2004.ebs_200.fsx_import_east-2b.yaml

Output:

{
 "cluster": {
 "clusterName": "cmaq",
 "cloudformationStackStatus": "UPDATE_IN_PROGRESS",
 "cloudformationStackArn": "xx-xxx-xx",
 "region": "us-east-2",
 "version": "3.1.1",
 "clusterStatus": "UPDATE_IN_PROGRESS"
 },
 "changeSet": [
 {
 "parameter": "Scheduling.SlurmQueues[queue1].ComputeResources[compute-resource-1].MaxCount",
 "requestedValue": 15,
 "currentValue": 10
 }
]
}

Check status of updated cluster

pcluster describe-cluster --region=us-east-2 --cluster-name cmaq

Output:

"clusterStatus": "UPDATE_IN_PROGRESS"

once you see

 "clusterStatus": "UPDATE_COMPLETE"
 "clusterName": "cmaq",
 "computeFleetStatus": "STOPPED",
 "cloudformationStackArn": "arn:aws:cloudformation:us-east-2:440858712842:stack/cmaq2/d68e5180-9698-11ed-b06c-06cfae76125a",
 "lastUpdatedTime": "2023-01-23T14:39:44.670Z",
 "region": "us-east-2",
 "clusterStatus": "UPDATE_COMPLETE"
}

Restart the compute nodes

pcluster update-compute-fleet --region us-east-2 --cluster-name cmaq --status START_REQUESTED

Verify that compute nodes have started

pcluster describe-cluster --region=us-east-2 --cluster-name cmaq

Output:

 "computeFleetStatus": "RUNNING",

Re-login to the cluster

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-2 --cluster-name cmaq

Submit a new job using the updated compute nodes

sbatch run_cctm_2016_12US2.576pe.6x96.24x24.pcluster.hpc6a.48xlarge.fsx.pin.codemod.csh

Note

If you still have difficulty running a job in the slurm queue, there may be other issues that need to be resolved.

Submit a 576 pe job 6 nodes x 96 cpus on the EBS volume /shared

sbatch run_cctm_2016_12US2.576pe.6x96.24x24.pcluster.hpc6a.48xlarge.shared.pin.csh

grep -i 'Processing completed.' CTM_LOG_036.v533_gcc_2016_CONUS_6x12pe_20151223

Output:

 Processing completed... 5.1 seconds
 Processing completed... 2.0 seconds
 Processing completed... 2.0 seconds
 Processing completed... 1.9 seconds
 Processing completed... 1.9 seconds
 Processing completed... 2.0 seconds
 Processing completed... 2.0 seconds
 Processing completed... 1.9 seconds

tail -n 18

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 576
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1043.09
02 2015-12-23 932.98
 Total Time = 1976.07
 Avg. Time = 988.03

Submit a minimum of 2 benchmark runs

Ideally, two CMAQ runs should be submitted to the slurm queue, using two different NPCOLxNPROW configurations, to create output needed for the QA and Post Processing Sections in Chapter 6.

upgrade pcluster version to try Persistent 2 Lustre Filesystem

/Users/lizadams/apc-ve/bin/python3 -m pip install --upgrade pip'\n'
python3 -m pip install --upgrade "aws-parallelcluster"

Create a new configuration file

pcluster configure -r us-east-2 –config hpc6a.48xlarge.ebs.fsx.us-east-2.yaml

Getting a CREATE_FAILED error message

Query the stack formation log messages

pcluster get-cluster-stack-events --cluster-name cmaq2 --region us-east-2 --query 'events[?resourceStatus==`CREATE_FAILED`]'

Output

 "eventId": "FSX39ea84acf1fef629-CREATE_FAILED-2023-01-23T17:14:19.869Z",
 "physicalResourceId": "",
 "resourceStatus": "CREATE_FAILED",
 "resourceStatusReason": "Linking a Persistent 2 file system to an S3 bucket using the LustreConfiguraton is not supported. Create a file system and then create a data repository association to link S3 buckets to the file system. For more details, visit https://docs.aws.amazon.com/fsx/latest/LustreGuide/create-dra-linked-data-repo.html (Service: AmazonFSx; Status Code: 400; Error Code: BadRequest; Request ID: dd4df24a-0eed-4e94-8205-a9d5a9605aae; Proxy: null)",
 "resourceProperties": "{\"FileSystemTypeVersion\":\"2.12\",\"StorageCapacity\":\"1200\",\"FileSystemType\":\"LUSTRE\",\"LustreConfiguration\":{\"ImportPath\":\"s3://cmas-cmaq-conus2-benchmark\",\"DeploymentType\":\"PERSISTENT_2\",\"PerUnitStorageThroughput\":\"1000\"},\"SecurityGroupIds\":[\"sg-00ab9ad20ea71b395\"],\"SubnetIds\":[\"subnet-02800a67052ad340a\"],\"Tags\":[{\"Value\":\"name2\",\"Key\":\"Name\"}]}",
 "stackId": "arn:aws:cloudformation:us-east-2:440858712842:stack/cmaq2/561cc920-9b41-11ed-a8d2-0a9db28fc6a2",
 "stackName": "cmaq2",
 "logicalResourceId": "FSX39ea84acf1fef629",
 "resourceType": "AWS::FSx::FileSystem",
 "timestamp": "2023-01-23T17:14:19.869Z"

Not sure the best way to set the VPC and security groups. Do you match the Parallel Cluster settings, or as the parallel cluster failed to build with the persistent2 lustre settings, do you create a new VPC and modify the yaml to have the parallel cluster use the VPC settings established when you create the lustre filesystem?

 CMAQv5.3.3 Parallel Cluster Benchmark on HPC6a-48xlarge with EBS and Lustre (optional)

CMAQv5.3.3 Parallel Cluster Benchmark on HPC6a-48xlarge with EBS and Lustre (optional)

Run CMAQv5.3.3 on a ParallelCluster using pre-loaded software and input data on EBS and Lustre using HPC6a-48xlarge Parallel Cluster.

	Use ParallelCluster pre-installed with CMAQv5.3.3 software and 12US2 Benchmark
	Obtain YAML file pre-loaded with input data and software
	Choose a directory on your local machine to obtain a copy of the github repo.

	Use a configuration file from the github by cloning the repo to your local machine

	Examine Diagram of the YAML file to build pre-installed software and input data.

	Edit Yaml file

	Create CMAQ ParallelCluster with software/data pre-installed

	Log into the new cluster

	Resize the EBS Volume

	Change shell to use tcsh

	Verify Software

	Verify Input Data

	Examine CMAQ Run Scripts

	To run on the EBS Volume a code modification is required.

	Build the code by running the makefile

	Submit Job to Slurm Queue to run CMAQ on Lustre
	Check status of run

	Successfully started run

	Once the job is successfully running

	Submit a run script to run on the EBS volume

	Modify YAML and then Update Parallel Cluster.
	Submit a new job using the updated compute nodes

	Submit a 576 pe job 6 nodes x 96 cpus on the EBS volume /shared

	Submit a minimum of 2 benchmark runs

	upgrade pcluster version to try Persistent 2 Lustre Filesystem

	Query the stack formation log messages

 Timing Information using C5n.18xlarge compute node

Timing Information using C5n.18xlarge compute node

Note

The following jobs were submitted using different configuration options on the Parallel Cluster. The record of these jobs is included for you to review, but it is not required to re-submit all of these benchmarks as part of this tutorial.

sbatch run_cctm_2016_12US2.108pe.3x36.pcluster.csh

grep -i 'Processing Completed' CTM_LOG_000.v533_gcc_2016_CONUS_9x12pe_20151222

Output:

 Processing completed... 6.0 seconds
 Processing completed... 6.0 seconds
 Processing completed... 8.3 seconds
 Processing completed... 8.2 seconds
 Processing completed... 6.0 seconds

`tail -n 18 run_cctmv5.3.3_Bench_2016_12US2.108.9x12pe.2day.pcluster.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 108
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2454.11
02 2015-12-23 2142.11
 Total Time = 4596.22
 Avg. Time = 2298.11

108 pe run with NPCOL=6, NPROW=18 to compare with the following run:

run_cctm_2016_12US2.72pe.2x36.pcluster.csh: @ NPCOL = 6; @ NPROW = 12`

sbatch run_cctm_2016_12US2.108pe.3x36.6x18.pcluster.csh

Compare the answers using m3diff and verify that get matching answers if NPCOL for both runs is identical NPCOL=6.

Note that answers do not match if NPCOL was different, despite the removal of the -march=native compiler flag.

	Do a make clean and rebuild

	Rerun two cases with different values for NPCOL

	Re-check the answers

Also run a case to verify that if NPCOL is identical than answers match.

sbatch run_cctm_2016_12US2.108pe.3x36.6x18.pcluster.csh

tail -n 20 /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctmv5.3.3_Bench_2016_12US2.108.6x18pe.2day.pcluster.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 108
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2415.37
02 2015-12-23 2122.62
 Total Time = 4537.99
 Avg. Time = 2268.99

Once that is done, save a snapshot of the volume prior to deleting the cluster, to update the run scripts.

Results from the Parallel Cluster Started with the pre-installed software with the input data copied to /fsx from S3 Bucket

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 256
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1305.99
02 2015-12-23 1165.30
 Total Time = 2471.29
 Avg. Time = 1235.64

Results from Parallel Cluster Started with the software with data imported from S3 Bucket to Lustre

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 256
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1564.90
02 2015-12-23 1381.80
 Total Time = 2946.70
 Avg. Time = 1473.35

Timing for a 288 pe run

tail -n 18 run_cctmv5.3.3_Bench_2016_12US2.16x18pe.2day.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 288
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1197.19
02 2015-12-23 1090.45
 Total Time = 2287.64
 Avg. Time = 1143.82

tail -n 18 run_cctmv5.3.3_Bench_2016_12US2.10x18pe.2day.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 180
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1585.67
02 2015-12-23 1394.52
 Total Time = 2980.19
 Avg. Time = 1490.09

Submit a minimum of 2 benchmark runs

Use two different NPCOLxNPROW configurations, to create output needed for the QA and Post Processing Sections in Chapter 6.

 CMAQv5.3.3 Intermediate Tutorial

CMAQv5.3.3 Intermediate Tutorial

Run CMAQ on a ParallelCluster using pre-loaded software and input data.

	Use ParallelCluster pre-installed with software and data.
	Obtain YAML file pre-loaded with input data and software
	Choose a directory on your local machine to obtain a copy of the github repo.

	Use a configuration file from the github by cloning the repo to your local machine

	Examine Diagram of the YAML file to build pre-installed software and input data.

	Edit Yaml file

	Create CMAQ ParallelCluster with software/data pre-installed

	Log into the new cluster

	Change shell to use tcsh

	Verify Software

	Verify Input Data

	Examine CMAQ Run Scripts

	Submit Job to Slurm Queue
	Check status of run

	Successfully started run

	Once the job is successfully running

	If you repeatedly see that the job is not successfully provisioned, cancel the job.

	Try submitting a smaller job to the queue.

	Check status of run

	Check to view any errors in the log on the parallel cluster

	if the job will not run using SPOT pricing, then update the compute nodes to use ONDEMAND pricing

	Submit a new job using the updated ondemand compute nodes

	Submit a 72 pe job 2 nodes x 36 cpus

	Submit a minimum of 2 benchmark runs

 Use ParallelCluster pre-installed with software and data.

 Intermediate Tutorial

Use ParallelCluster pre-installed with software and data.

Step by step instructions for running the CMAQ 12US2 Benchmark for 2 days on a ParallelCluster.

Obtain YAML file pre-loaded with input data and software

Choose a directory on your local machine to obtain a copy of the github repo.

cd /your/local/machine/install/path/

Use a configuration file from the github by cloning the repo to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq/yaml

Note

To find the default settings for Lustre see:
Lustre Settings for ParallelCluster

Examine Diagram of the YAML file to build pre-installed software and input data.

Includes Snapshot ID of volume pre-installed with CMAQ software stack and name of S3 Bucket to import data to the Lustre Filesystem

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c5n.large head node and c5n.18xlarge compute nodes with Software and Data Pre-installed (linked on lustre filesystem)

[image: c5n-18xlarge Software+Data Pre-installed yaml configuration]

Edit Yaml file

This Yaml file specifies the /shared directory that contains the CMAQv5.3.3 and libraries, and the input data that will be imported from an S3 bucket to the /fsx lustre file system
Note, the following yaml file is using a c5n-9xlarge compute node, and is using ONDEMAND pricing.

Note

Edit the c5n-9xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import_opendata.yaml file to specify your subnet-id and your keypair prior to creating the cluster

vi c5n-9xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import_opendata.yaml

Output:

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c5n.large
 Networking:
 SubnetId: subnet-xx-xx-xx <<< replace subnetID
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your-key <<< replace keyname
Scheduling:
 Scheduler: slurm
 SlurmSettings:
 ScaledownIdletime: 5
 SlurmQueues:
 - Name: queue1
 CapacityType: SPOT
 Networking:
 SubnetIds:
 - subnet-xx-xx-xxx <<< replace subnetID
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: c5n.9xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 EbsSettings:
 SnapshotId: snap-017568d24a4cedc83
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://cmas-cmaq-conus2-benchmark/data/CMAQ_Modeling_Platform_2016/CONUS

Create CMAQ ParallelCluster with software/data pre-installed

pcluster create-cluster --cluster-configuration c5n-9xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import_opendata.yaml --cluster-name cmaq --region us-east-1

Output:

{
 "cluster": {
 "clusterName": "cmaq",
 "cloudformationStackStatus": "CREATE_IN_PROGRESS",
 "cloudformationStackArn": "arn:aws:cloudformation:us-east-1:440858712842:stack/cmaq/6cfb1a50-6e99-11ec-8af1-0ea2256597e5",
 "region": "us-east-1",
 "version": "3.0.2",
 "clusterStatus": "CREATE_IN_PROGRESS"
 }
}

Check status again

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

{
 "creationTime": "2022-01-06T02:36:18.119Z",
 "version": "3.0.2",
 "clusterConfiguration": {
 "url": "
 },
 "tags": [
 {
 "value": "3.0.2",
 "key": "parallelcluster:version"
 }
],
 "cloudFormationStackStatus": "CREATE_IN_PROGRESS",
 "clusterName": "cmaq",
 "computeFleetStatus": "UNKNOWN",
 "cloudformationStackArn":
 "lastUpdatedTime": "2022-01-06T02:36:18.119Z",
 "region": "us-east-1",
 "clusterStatus": "CREATE_IN_PROGRESS"
}

After 5-10 minutes, check the status again and recheck until you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Check status again

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

 "cloudFormationStackStatus": "CREATE_COMPLETE",
 "clusterName": "cmaq",
 "computeFleetStatus": "RUNNING",
 "cloudformationStackArn": "arn:aws:cloudformation:us-east-1:440858712842:stack/cmaq/3cd2ba10-c18f-11ec-9f57-0e9b4dd12971",
 "lastUpdatedTime": "2022-04-21T16:22:28.879Z",
 "region": "us-east-1",
 "clusterStatus": "CREATE_COMPLETE"

Start the compute nodes, if the computeFleetStatus is not set to RUNNING

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Log into the new cluster

Note

replace your-key.pem with your Key Name

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Change shell to use tcsh

sudo usermod -s /bin/tcsh ubuntu

Log out and then log back in to have the shell take effect.

Verify Software

The software is pre-loaded on the /shared volume of the ParallelCluster. The software was previously loaded and saved to the snapshot.

ls /shared/build

Create a .cshrc file by copying it from the git repo that is on /shared/pcluster-cmaq

cp /shared/pcluster-cmaq/install/dot.cshrc.pcluster ~/.cshrc

Source shell

csh

Load the modules

module avail

Output:

-- /usr/share/modules/modulefiles ---
dot libfabric-aws/1.13.2amzn1.0 module-git module-info modules null openmpi/4.1.1 use.own

Load the modules openmpi and libfabric

module load openmpi/4.1.1

module load libfabric-aws/1.13.2amzn1.0

Verify Input Data

The input data was imported from the S3 bucket to the lustre file system (/fsx).

cd /fsx/data/CMAQ_Modeling_Platform_2016/CONUS/12US2/

Notice that the data doesn’t take up much space, it must be linked, rather than copied.

du -h

Output:

27K ./land
33K ./MCIP
28K ./emissions/ptegu
55K ./emissions/ptagfire
27K ./emissions/ptnonipm
55K ./emissions/ptfire_othna
27K ./emissions/pt_oilgas
26K ./emissions/inln_point/stack_groups
51K ./emissions/inln_point
28K ./emissions/cmv_c1c2_12
28K ./emissions/cmv_c3_12
28K ./emissions/othpt
55K ./emissions/ptfire
407K ./emissions
27K ./icbc
518K .

Change the group and ownership permissions on the /fsx/data directory

sudo chown ubuntu /fsx/data

sudo chgrp ubuntu /fsx/data

Create the output directory

mkdir -p /fsx/data/output

Examine CMAQ Run Scripts

The run scripts are available in two locations, one in the CMAQ scripts directory.

Another copy is available in the pcluster-cmaq repo.
Do a git pull to obtain the latest scripts in the pcluster-cmaq repo.

cd /shared/pcluster-cmaq

git pull

Verify that the run scripts are updated and pre-configured for the parallel cluster by comparing with what is available in the github repo

cd /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts

Example:

diff /shared/pcluster-cmaq/run_scripts/cmaq533/c5n.9xlarge/run_cctm_2016_12US2.108pe.6x18.pcluster.csh .

If a run script is missing or outdated, copy the run scripts from the repo.
Note, there are different run scripts depending on what compute node is used. This tutorial assumes c5n.9xlarge is the compute node.

cp /shared/pcluster-cmaq/run_scripts/cmaq533/c5n.9xlarge/run*pcluster.csh /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/

Note

The time that it takes the 2 day CONUS benchmark to run will vary based on the number of CPUs used, and the compute node that is being used.
See Figure 3 Benchmark Scaling Plot for c5n.18xlarge and c5n.9xlarge in chapter 11 for reference.

Examine how the run script is configured

head -n 30 /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctm_2016_12US2.108pe.6x18.pcluster.csh

#!/bin/csh -f
For c5n.9xlarge (36 vcpu - 18 cpu)
works with cluster-ubuntu.yaml
data on /fsx directory
#SBATCH --nodes=6
#SBATCH --ntasks-per-node=18
#SBATCH --exclusive
#SBATCH -J CMAQ
#SBATCH -o /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctmv5.3.3_Bench_2016_12US2.108.9x12pe.2day.sharedvol.log
#SBATCH -e /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctmv5.3.3_Bench_2016_12US2.108.9x12pe.2day.sharedvol.log

Note

In this run script, slurm or SBATCH requests 6 nodes, each node with 18 pes, or 6x18 = 108 pes

Verify that the NPCOL and NPROW settings in the script are configured to match what is being requested in the SBATCH commands that tell slurm how many compute nodes to provision.
In this case, to run CMAQ using on 108 cpus (SBATCH –nodes=6 and –ntasks-per-node=18), use NPCOL=9 and NPROW=12.

grep NPCOL /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctm_2016_12US2.108pe.6x18.pcluster.csh

Output:

 setenv NPCOL_NPROW "1 1"; set NPROCS = 1 # single processor setting
 @ NPCOL = 9; @ NPROW = 12
 @ NPROCS = $NPCOL * $NPROW
 setenv NPCOL_NPROW "$NPCOL $NPROW";

Submit Job to Slurm Queue

cd /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/

sbatch run_cctm_2016_12US2.108pe.6x18.pcluster.csh

Check status of run

squeue

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 1 queue1 CMAQ ubuntu PD 0:00 6 (BeginTime)

Successfully started run

squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 22:39 6 queue1-dy-compute-resource-1-[1-6]

Once the job is successfully running

Check on the log file status

grep -i 'Processing completed.' CTM_LOG_001*_gcc_2016*

Output:

 Processing completed... 6.5 seconds
 Processing completed... 6.5 seconds
 Processing completed... 6.5 seconds
 Processing completed... 6.5 seconds
 Processing completed... 6.4 seconds

Once the job has completed running the two day benchmark check the log file for the timings.

tail -n 30 run_cctmv5.3.3_Bench_2016_12US2.108.9x12pe.2day.fsx_copied.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 108
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2421.19
02 2015-12-23 2144.16
 Total Time = 4565.35
 Avg. Time = 2282.67

Note

if you see the following message, you may want to submit a job that requires fewer PEs.

ip-10-0-5-165:/shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts% squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 1 queue1 CMAQ ubuntu PD 0:00 6 (Nodes required for job are DOWN, DRAINED or reserved for jobs in higher priority partitions)

If you repeatedly see that the job is not successfully provisioned, cancel the job.

To cancel the job use the following command

scancel 1

Try submitting a smaller job to the queue.

sbatch run_cctm_2016_12US2.90pe.5x18.pcluster.csh

Check status of run

squeue

Check to view any errors in the log on the parallel cluster

vi /var/log/parallelcluster/slurm_resume.log

An error occurred (MaxSpotInstanceCountExceeded) when calling the RunInstances operation: Max spot instance count exceeded

Note

If you encounter this error, you will need to submit a request to increase this spot instance limit using the AWS Website.

if the job will not run using SPOT pricing, then update the compute nodes to use ONDEMAND pricing

To do this, exit the cluster, stop the compute nodes, then edit the yaml file to modify SPOT to ONDEMAND.

exit

On your local computer use the following command to stop the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status STOP_REQUESTED

Edit the yaml file to modify SPOT to ONDEMAND, then update the cluster using the following command:

pcluster update-cluster --region us-east-1 --cluster-name cmaq --cluster-configuration c5n-18xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import_opendata.yaml

Output:

{
 "cluster": {
 "clusterName": "cmaq",
 "cloudformationStackStatus": "UPDATE_IN_PROGRESS",
 "cloudformationStackArn": "xx-xxx-xx",
 "region": "us-east-1",
 "version": "3.1.1",
 "clusterStatus": "UPDATE_IN_PROGRESS"
 },
 "changeSet": [
 {
 "parameter": "Scheduling.SlurmQueues[queue1].CapacityType",
 "requestedValue": "ONDEMAND",
 "currentValue": "SPOT" <<< Modify to use ONDEMAND
 }
]
}

Check status of updated cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

"clusterStatus": "UPDATE_IN_PROGRESS"

once you see

 "clusterStatus": "UPDATE_COMPLETE"

Restart the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Verify that compute nodes have started

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

 "computeFleetStatus": "RUNNING",

Re-login to the cluster

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Submit a new job using the updated ondemand compute nodes

sbatch run_cctm_2016_12US2.180pe.5x36.pcluster.csh

Note

If you still have difficulty running a job in the slurm queue, there may be other issues that need to be resolved.

Verify that your IAM Policy has been created for your account.

Someone with administrative permissions should eable the spot instances IAM Policy: AWSEC2SpotServiceRolePolicy

An alternative way to enable this policy is to login to the EC2 Website and launch a spot instance.
The service policy will be automatically created, that can then be used by ParallelCluster.

Submit a 72 pe job 2 nodes x 36 cpus

sbatch run_cctm_2016_12US2.72pe.2x36.pcluster.csh

grep -i 'Processing completed.' CTM_LOG_036.v533_gcc_2016_CONUS_6x12pe_20151223

Output:

 Processing completed... 9.0 seconds
 Processing completed... 12.0 seconds
 Processing completed... 11.2 seconds
 Processing completed... 9.0 seconds
 Processing completed... 9.1 seconds

tail -n 20 run_cctmv5.3.3_Bench_2016_12US2.72.6x12pe.2day.pcluster.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 72
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 3562.50
02 2015-12-23 3151.21
 Total Time = 6713.71
 Avg. Time = 3356.85

Submit a minimum of 2 benchmark runs

Ideally, two CMAQ runs should be submitted to the slurm queue, using two different NPCOLxNPROW configurations, to create output needed for the QA and Post Processing Sections in Chapter 10.

 Timing Information using C5n.18xlarge compute node

Timing Information using C5n.18xlarge compute node

Note

The following jobs were submitted using different configuration options on the Parallel Cluster. The record of these jobs is included for you to review, but it is not required to re-submit all of these benchmarks as part of this tutorial.

sbatch run_cctm_2016_12US2.108pe.3x36.pcluster.csh

grep -i 'Processing Completed' CTM_LOG_000.v533_gcc_2016_CONUS_9x12pe_20151222

Output:

 Processing completed... 6.0 seconds
 Processing completed... 6.0 seconds
 Processing completed... 8.3 seconds
 Processing completed... 8.2 seconds
 Processing completed... 6.0 seconds

`tail -n 18 run_cctmv5.3.3_Bench_2016_12US2.108.9x12pe.2day.pcluster.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 108
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2454.11
02 2015-12-23 2142.11
 Total Time = 4596.22
 Avg. Time = 2298.11

108 pe run with NPCOL=6, NPROW=18 to compare with the following run:

run_cctm_2016_12US2.72pe.2x36.pcluster.csh: @ NPCOL = 6; @ NPROW = 12`

sbatch run_cctm_2016_12US2.108pe.3x36.6x18.pcluster.csh

Compare the answers using m3diff and verify that get matching answers if NPCOL for both runs is identical NPCOL=6.

Note that answers do not match if NPCOL was different, despite the removal of the -march=native compiler flag.

	Do a make clean and rebuild

	Rerun two cases with different values for NPCOL

	Re-check the answers

Also run a case to verify that if NPCOL is identical than answers match.

sbatch run_cctm_2016_12US2.108pe.3x36.6x18.pcluster.csh

tail -n 20 /shared/build/openmpi_gcc/CMAQ_v533/CCTM/scripts/run_cctmv5.3.3_Bench_2016_12US2.108.6x18pe.2day.pcluster.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 108
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2415.37
02 2015-12-23 2122.62
 Total Time = 4537.99
 Avg. Time = 2268.99

Once that is done, save a snapshot of the volume prior to deleting the cluster, to update the run scripts.

Results from the Parallel Cluster Started with the pre-installed software with the input data copied to /fsx from S3 Bucket

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 256
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1305.99
02 2015-12-23 1165.30
 Total Time = 2471.29
 Avg. Time = 1235.64

Results from Parallel Cluster Started with the software with data imported from S3 Bucket to Lustre

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 256
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1564.90
02 2015-12-23 1381.80
 Total Time = 2946.70
 Avg. Time = 1473.35

Timing for a 288 pe run

tail -n 18 run_cctmv5.3.3_Bench_2016_12US2.16x18pe.2day.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 288
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1197.19
02 2015-12-23 1090.45
 Total Time = 2287.64
 Avg. Time = 1143.82

tail -n 18 run_cctmv5.3.3_Bench_2016_12US2.10x18pe.2day.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 180
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1585.67
02 2015-12-23 1394.52
 Total Time = 2980.19
 Avg. Time = 1490.09

Submit a minimum of 2 benchmark runs

Use two different NPCOLxNPROW configurations, to create output needed for the QA and Post Processing Sections in Chapter 6.

 Learn how to Use AWS CLI to launch EC2 instance using Public AMI

Learn how to Use AWS CLI to launch EC2 instance using Public AMI

Public AMI contains the software and data to run 12US1 using CMAQv5.4+

Software was pre-installed and saved to a public ami.

The input data was also transferred from the AWS Open Data Program and installed on the EBS volume.

This chapter describes the process that was used to test and configure the c6a.48xlarge ec2 instance to run CMAQv5.4 for the 12US1 domain.

Todo: Need to create command line options to copy a public ami to a different region.

Verify that you can see the public AMI on the us-east-1 region.

aws ec2 describe-images --region us-east-1 --image-id ami-0aaa0cfeb5ed5763c

Output:

{
 "Images": [
 {
 "Architecture": "x86_64",
 "CreationDate": "2023-06-07T02:52:26.000Z",
 "ImageId": "ami-0aaa0cfeb5ed5763c",
 "ImageLocation": "440858712842/cmaqv5.4_c6a.48xlarge",
 "ImageType": "machine",
 "Public": true,
 "OwnerId": "440858712842",
 "PlatformDetails": "Linux/UNIX",
 "UsageOperation": "RunInstances",
 "State": "available",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": true,
 "Iops": 4000,
 "SnapshotId": "snap-0c2f11a82e76aac9b",
 "VolumeSize": 500,
 "VolumeType": "gp3",
 "Throughput": 1000,
 "Encrypted": false
 }
 },
 {
 "DeviceName": "/dev/sdb",
 "VirtualName": "ephemeral0"
 },
 {
 "DeviceName": "/dev/sdc",
 "VirtualName": "ephemeral1"
 }
],
 "EnaSupport": true,
 "Hypervisor": "xen",
 "Name": "cmaqv5.4_c6a.48xlarge",
 "RootDeviceName": "/dev/sda1",
 "RootDeviceType": "ebs",
 "SriovNetSupport": "simple",
 "VirtualizationType": "hvm",
 "DeprecationTime": "2025-06-07T02:52:26.000Z"
 }
]
}

Note that the above AMI has a the maximum throughput limit of 1000, but this AMI had an IOPS limit of 4000 which caused I/O issues documented below.

The solution is to use update the volume to a use the maximum value for IOPS of 16000, and then save the EC2 instance as a new AMI that will have the highest IOPS and throughput for the gp3 VolumeType.
The following is a screenshot of the option to do this within the AWS Web Interface. I will work on documenting a method to do this from the command line, but this will be saved for the advanced tutorial.

[image: EC2 Modify Volume]

AWS Resources for the aws cli method to launch ec2 instances.

aws cli exampmles

aws cli run instances command

Tutorial Launch Spot Instances

(note, it discourages the use of run-instances for launching spot instances, but they do provide an example method)

Launching EC2 Spot Instances using Run Instances API

Additional resources for spot instance provisioning.

Spot Instance Requests

To launch a Spot Instance with RunInstances API you create the configuration file as described below:

cat <<EoF > ./runinstances-config.json
{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.48xlarge",
 "ImageId": "ami-0aaa0cfeb5ed5763c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}
EoF

{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.48xlarge",
 "ImageId": "ami-0aaa0cfeb5ed5763c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}

Use a publically available AMI to launch a c6a.48xlarge ec2 instance using a gp3 volume with 16000 IOPS with hyperthreading disabled

Launch a new instance using the AMI with the software loaded and request a spot instance for the c6a.8xlarge EC2 instance

Note, we will be using a json file that has been preconfigured to specify the ImageId

cd /shared/pcluster-cmaq

Note, you will need to obtain a security group id from your IT administrator that allows ssh login access.
If this is enabled by default, then you can remove the –security-group-ids launch-wizard-with-tcp-access

Example command: note launch-wizard-with-tcp-access needs to be replaced by your security group ID, and your-pem key needs to be replaced by the name of your-pem.pem key.

aws ec2 run-instances --debug --key-name your-pem --security-group-ids launch-wizard-with-tcp-access --dryrun --region us-east-1 --cli-input-json file://runinstances-config.json

Command that works for UNC’s security group and pem key:

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --dryrun --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.hyperthread-off.16000IOPS.json

Once you have verified that the command above works with the –dryrun option, rerun it without as follows.

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.hyperthread-off.16000IOPS.json

Example of security group inbound and outbound rules required to connect to EC2 instance via ssh.

[image: Inbound Rule]

[image: Outbound Rule]

(I am not sure if you can create a security group rule from the aws command line.)

Additional resources

CLI commands to create Security Group

Use the following command to obtain the public IP address of the machine.

This command is commented out, as the instance hasn’t been created yet. keeping the instructions for documentation purposes.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-0aaa0cfeb5ed5763c" | grep PublicIpAddress

Login to the ec2 instance

Note, the following command must be modified to specify your key, and ip address (obtained from the previous command):

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@ip.address

Load the environment modules

module avail

module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

Run CMAQv5.4 for 12US1 Listos Training 3 Day benchmark Case on 32 pe (this will take less than 2 minutes)

Input data is available for a subdomain of the 12km 12US1 case.

GRIDDESC

'2018_12Listos'
'LamCon_40N_97W' 1812000.000 240000.000 12000.000 12000.000 25 25 1

Use command line to submit the job. This single virtual machine does not have a job scheduler such as slurm installed.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
./run_cctm_2018_12US1_listos_32pe.csh |& tee ./run_cctm_2018_12US1_listos_32pe.log

Use HTOP to view performance.

htop

output

[image: Screenshot of HTOP]

Successful output

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 87.6
02 2018-08-06 77.9
03 2018-08-07 77.2
 Total Time = 242.70
 Avg. Time = 80.90

Change to the scripts directory

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Use lscpu to confirm that there are 96 processors on the c6a.48xlarge ec2 instance that was created with hyperthreading turned off.

lscpu

Output:

Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 48 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 96
 On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
 Model name: AMD EPYC 7R13 Processor
 CPU family: 25
 Model: 1
 Thread(s) per core: 1
 Core(s) per socket: 48
 Socket(s): 2
 Stepping: 1
 BogoMIPS: 5299.98
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxs
 r_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq m
 onitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_l
 egacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 a
 vx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat
 npt nrip_save vaes vpclmulqdq rdpid
Virtualization features:
 Hypervisor vendor: KVM
 Virtualization type: full
Caches (sum of all):
 L1d: 3 MiB (96 instances)
 L1i: 3 MiB (96 instances)
 L2: 48 MiB (96 instances)
 L3: 384 MiB (12 instances)
NUMA:
 NUMA node(s): 4
 NUMA node0 CPU(s): 0-23
 NUMA node1 CPU(s): 24-47
 NUMA node2 CPU(s): 48-71
 NUMA node3 CPU(s): 72-95
Vulnerabilities:
 Itlb multihit: Not affected
 L1tf: Not affected
 Mds: Not affected
 Meltdown: Not affected
 Mmio stale data: Not affected
 Retbleed: Not affected
 Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
 Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, RSB filling, PBRSB-eIBRS Not affected
 Srbds: Not affected
 Tsx async abort: Not affected

Login to the ec2 instance again, so that you have two windows logged into the machine.

ssh -Y -i ~/your-pem.pem ubuntu@your-ip-address

Download input data for 12NE3 1 day Benchmark case

Instructions to copy data from the s3 bucket to the ec2 instance and run this benchmark.

cd /shared/pcluster-cmaq/

Examine the command line options that are used to download the data. Note, that we can use the –nosign option, as the data is available from the CMAS Open Data Warehouse on AWS.

cat s3_copy_12NE3_Bench.csh

Output

#!/bin/csh -f
#Script to download enough data to run START_DATE 201522 and END_DATE 201523 for 12km Northeast Domain
#Requires installing aws command line interface
#https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#cliv2-linux-install
#Total storage required is 56 G

setenv AWS_REGION "us-east-1"

aws s3 cp --no-sign-request --recursive s3://cmas-cmaq/CMAQv5.4_2018_12NE3_Benchmark_2Day_Input /shared/data/

Use the aws s3 copy command to copy data from the CMAS Data Warehouse Open Data S3 bucket.

./s3_copy_12NE3_Bench.csh

Link the data directory on /shared/data

cd /shared/build/openmpi_gcc/CMAQ_v54+/data
ln -s /shared/data/2018_12NE3 .

Edit the 12US3 Benchmark run script to use the gcc compiler and to output all species to CONC output file.

vi run_cctm_Bench_2018_12NE3.c6a48xlarge.csh

change

 setenv compiler intel

to

 setenv compiler gcc

Comment out the CONC_SPCS setting that limits them to only 12 species

 # setenv CONC_SPCS "O3 NO ANO3I ANO3J NO2 FORM ISOP NH3 ANH4I ANH4J ASO4I ASO4J"

Run the 12US3 Benchmark case

./run_cctm_Bench_2018_12NE3.c6a48xlarge.csh |& tee ./run_cctm_Bench_2018_12NE3.c6a48xlarge.32pe.log

Successful output for 12 species output in the 3-D CONC file took 7.4 minutes to run 1 day

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 445.19
 Total Time = 445.19
 Avg. Time = 445.19

Successful output for all species output in the 3-D CONC File (222 variables)

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 444.34
 Total Time = 444.34
 Avg. Time = 444.34

Compare to timings available in Table 3-1 Example of job scenarios at EPA for a single day simulation.

Domain 	 Domain size 	Species Tracked 	Input files size 	Output files size 	Run time (# cores)
2018 North East US 	100 X 105 X 35 	225 	 26GB 	 2GB 	 15 min/day (32)

Run 12US1 2 day benchmark case on 96 processors

./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.8x12.ncclassic.csh | & tee run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.8x12.ncclassic.16000IOPS.log

Successful timing

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 2979.7
02 2017-12-23 3333.7
 Total Time = 6313.40
 Avg. Time = 3156.70

Run 12US1 2 day benchmark case on 96 processors

./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.12x8.ncclassic.csh |& tee ./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.12x8.ncclassic.log

Verify that it is using 99% of each of the 96 cores using htop

htop

Successful run timing

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3070.4
02 2017-12-23 3386.7
 Total Time = 6457.10
 Avg. Time = 3228.55

Compare timing to output available CMAQ User Guide: Running CMAQ

Find the InstanceID using the following command on your local machine.

aws ec2 describe-instances --region=us-east-1 | grep InstanceId

Output

i-xxxx

Stop the instance

aws ec2 stop-instances --region=us-east-1 --instance-ids i-xxxx

Get the following error message.

aws ec2 stop-instances –region=us-east-1 –instance-ids i-041a702cc9f7f7b5d

An error occurred (UnsupportedOperation) when calling the StopInstances operation: You can’t stop the Spot Instance ‘i-041a702cc9f7f7b5d’ because it is associated with a one-time Spot Instance request. You can only stop Spot Instances associated with persistent Spot Instance requests.

Note sure how to do a persistent spot instance request .

Terminate Instance

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

Verify that the instance is being shut down.

aws ec2 describe-instances --region=us-east-1

 Create c6a.2xlarge EC2 instance using Public AMI

Create c6a.2xlarge EC2 instance using Public AMI

The c6a.8xlarge EC2 instance contains 4 cores and is sized to run the 12LISTOS-training Benchmark.

Public AMI contains the software and data to run CMAQv5.4+

The benchmark input data was transferred from the AWS Open Data Program and installed on the EBS volume.

This chapter describes the process that was used to configure and create the c6a.2xlarge ec2 instance.
See chapter 3 for instructions to run CMAQv5.4 for the 12LISTOS-training domain using the c6a.2xlarge ec2 instance.

Todo: Need to create command line options to copy a public ami to a different region.

Verify that you can see the public AMI on the us-east-1 region.

aws ec2 describe-images --region us-east-1 --image-id ami-051ba52c157e4070c

Output:

{
 "Images": [
 {
 "Architecture": "x86_64",
 "CreationDate": "2023-07-05T14:10:42.000Z",
 "ImageId": "ami-051ba52c157e4070c",
 "ImageLocation": "440858712842/cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "ImageType": "machine",
 "Public": true,
 "OwnerId": "440858712842",
 "PlatformDetails": "Linux/UNIX",
 "UsageOperation": "RunInstances",
 "State": "available",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": true,
 "Iops": 16000,
 "SnapshotId": "snap-08789828f7ab945ed",
 "VolumeSize": 500,
 "VolumeType": "gp3",
 "Throughput": 1000,
 "Encrypted": false
 }
 },
 {
 "DeviceName": "/dev/sdb",
 "VirtualName": "ephemeral0"
 },
 {
 "DeviceName": "/dev/sdc",
 "VirtualName": "ephemeral1"
 }
],
 "Description": "[Copied ami-01605a204650ede2f from us-east-1] cmaqv5.4_c6a_48xlarge_gp3_IOPS_16000_throughput_1000",
 "EnaSupport": true,
 "Hypervisor": "xen",
 "Name": "cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "RootDeviceName": "/dev/sda1",
 "RootDeviceType": "ebs",
 "SriovNetSupport": "simple",
 "VirtualizationType": "hvm",
 "DeprecationTime": "2025-07-05T14:10:42.000Z"
 }
]
}

Use q to exit out of the command line

Note, the AMI uses the default values of iops and throughput for the gp3 volume.

AWS Resources for the aws cli method to launch ec2 instances.

aws cli examples

aws cli run instances command

Tutorial Launch Spot Instances

Launching EC2 Spot Instances using Run Instances API

Additional resources for spot instance provisioning.

Spot Instance Requests

To launch a Spot Instance with RunInstances API you create the configuration file as described below:

cat <<EoF > ./runinstances-config.gp3.json
{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.2xlarge",
 "ImageId": "ami-051ba52c157e4070c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}
EoF

Use the publically available AMI to launch an ondemand c6a.2xlarge ec2 instance

using a gp3 volume with hyperthreading disabled

Note, we will be using a json file that has been preconfigured to specify the ImageId

Obtain the code using git

git clone -b main https://github.com/CMASCenter/pcluster-cmaq

cd pcluster-cmaq/json

Note, you will need to obtain a security group id from your IT administrator that allows ssh login access.
If this is enabled by default, then you can remove the –security-group-ids launch-wizard-with-tcp-access

Example command: note launch-wizard-with-tcp-access needs to be replaced by your security group ID, and your-pem key needs to be replaced by the name of your-pem.pem key.

aws ec2 run-instances --debug --key-name your-pem --security-group-ids launch-wizard-with-tcp-access --dry-run --region us-east-1 --cli-input-json file://runinstances-config.json

Also use the aws –cpu-options to specify the number of cores to match the selected ec2 instance type (c6a.2xlarge has 4 cores) and limit the ThreadsPerCore to 1 to disable hyperthreading.

Command that works for UNC’s security group and pem key:

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --dry-run --ebs-optimized --cpu-options CoreCount=4,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.c6a.2xlarge.json

Once you have verified that the command above works with the –dry-run option, rerun it without as follows.

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --cpu-options CoreCount=4,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.c6a.2xlarge.json

Use the q command to return to the cursor

Use the following command to obtain the public IP address of the machine.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep -A 3 PublicIpAddress

Also verify that it has switched from an initializing state to a running state.

 Create a c6a.48xlarge EC2 instance using Public AMI

Create a c6a.48xlarge EC2 instance using Public AMI

The c6a.48xlarge EC2 instance contains 96 cores and is sized to run the 12US1 Benchmark.

Public AMI contains the software and data to run 12US1 using CMAQv5.4+

Software was pre-installed and saved to a public ami.

The input data was also transferred from the AWS Open Data Program and installed on the EBS volume.

This chapter describes the process that was used to test and configure the c6a.48xlarge ec2 instance to run CMAQv5.4 for the 12US1 domain.

Todo: Need to create command line options to copy a public ami to a different region.

Verify that you can see the public AMI on the us-east-1 region.

aws ec2 describe-images --region us-east-1 --image-id ami-051ba52c157e4070c

Output:

{
 "Images": [
 {
 "Architecture": "x86_64",
 "CreationDate": "2023-07-05T14:10:42.000Z",
 "ImageId": "ami-051ba52c157e4070c",
 "ImageLocation": "440858712842/cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "ImageType": "machine",
 "Public": true,
 "OwnerId": "440858712842",
 "PlatformDetails": "Linux/UNIX",
 "UsageOperation": "RunInstances",
 "State": "available",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": true,
 "Iops": 16000,
 "SnapshotId": "snap-08789828f7ab945ed",
 "VolumeSize": 500,
 "VolumeType": "gp3",
 "Throughput": 1000,
 "Encrypted": false
 }
 },
 {
 "DeviceName": "/dev/sdb",
 "VirtualName": "ephemeral0"
 },
 {
 "DeviceName": "/dev/sdc",
 "VirtualName": "ephemeral1"
 }
],
 "Description": "[Copied ami-01605a204650ede2f from us-east-1] cmaqv5.4_c6a_48xlarge_gp3_IOPS_16000_throughput_1000",
 "EnaSupport": true,
 "Hypervisor": "xen",
 "Name": "cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "RootDeviceName": "/dev/sda1",
 "RootDeviceType": "ebs",
 "SriovNetSupport": "simple",
 "VirtualizationType": "hvm",
 "DeprecationTime": "2025-07-05T14:10:42.000Z"
 }
]
}

Use q to exit out of the command line

AWS Resources for the aws cli method to launch ec2 instances.

aws cli examples

aws cli run instances command

Tutorial Launch Spot Instances

(note, it discourages the use of run-instances for launching spot instances, but they do provide an example method)

Launching EC2 Spot Instances using Run Instances API

Additional resources for spot instance provisioning.

Spot Instance Requests

To launch a Spot Instance with RunInstances API you create the configuration file as described below:

cat <<EoF > ./runinstances-config.json
{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.48xlarge",
 "ImageId": "ami-051ba52c157e4070c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}
EoF

Use the publically available AMI to launch an ondemand c6a.48xlarge ec2 instance

with hyperthreading disabled

Note, we will be using a json file that has been preconfigured to specify the ImageId

Obtain the code using git

git clone -b main https://github.com/CMASCenter/pcluster-cmaq

cd pcluster-cmaq/json

Note, you will need to obtain a security group id from your IT administrator that allows ssh login access.
If this is enabled by default, then you can remove the –security-group-ids launch-wizard-with-tcp-access

Example command: note launch-wizard-with-tcp-access needs to be replaced by your security group ID, and your-pem key needs to be replaced by the name of your-pem.pem key.

aws ec2 run-instances --debug --key-name your-pem --security-group-ids launch-wizard-with-tcp-access --dry-run --region us-east-1 --cli-input-json file://runinstances-config.json

Use the aws –cpu-options to specify the number of cores to match the selected ec2 instance type (c6a.48xlarge has 96 cores) and limit the ThreadsPerCore to 1 to disable hyperthreading.

Command that works for UNC’s security group and pem key:

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --dry-run --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.json

Once you have verified that the command above works with the –dry-run option, rerun it without as follows.

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.json

Use the following command to obtain the public IP address of the machine.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep PublicIpAddress

Login to the ec2 instance

Note, the following command must be modified to specify your key, and ip address (obtained from the previous command):
Note, you will get a connection refused if you try to login prior to the ec2 instance being ready to run (takes ~5 minutes for initialization).

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@ip.address

Login to the ec2 instance again, so that you have two windows logged into the machine.

ssh -Y -i ~/downloads/your-pem.pem ubuntu@your-ip-address

Load the environment modules

module avail

module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

Update the pcluster-cmaq repo using git

cd /shared/pcluster-cmaq

git pull

 Create c6a.8xlarge EC2 instance using Public AMI

Create c6a.8xlarge EC2 instance using Public AMI

The c6a.8xlarge EC2 instance contains 16 cores and is sized to run the 12NE3 Benchmark.

Public AMI contains the software and data to run 12US1, 12NE3, and 12LISTOS-training using CMAQv5.4+

Software was pre-installed and saved to a public ami.

The input data was also transferred from the AWS Open Data Program and installed on the EBS volume.

This chapter describes the process that was used to test and configure the c6a.8xlarge ec2 instance to run CMAQv5.4 for the 12NE3 domain.

Todo: Need to create command line options to copy a public ami to a different region.

Verify that you can see the public AMI on the us-east-1 region.

aws ec2 describe-images --region us-east-1 --image-id ami-051ba52c157e4070c

Output:

{
 "Images": [
 {
 "Architecture": "x86_64",
 "CreationDate": "2023-07-05T14:10:42.000Z",
 "ImageId": "ami-051ba52c157e4070c",
 "ImageLocation": "440858712842/cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "ImageType": "machine",
 "Public": true,
 "OwnerId": "440858712842",
 "PlatformDetails": "Linux/UNIX",
 "UsageOperation": "RunInstances",
 "State": "available",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": true,
 "Iops": 16000,
 "SnapshotId": "snap-08789828f7ab945ed",
 "VolumeSize": 500,
 "VolumeType": "gp3",
 "Throughput": 1000,
 "Encrypted": false
 }
 },
 {
 "DeviceName": "/dev/sdb",
 "VirtualName": "ephemeral0"
 },
 {
 "DeviceName": "/dev/sdc",
 "VirtualName": "ephemeral1"
 }
],
 "Description": "[Copied ami-01605a204650ede2f from us-east-1] cmaqv5.4_c6a_48xlarge_gp3_IOPS_16000_throughput_1000",
 "EnaSupport": true,
 "Hypervisor": "xen",
 "Name": "cmaqv5.4_c6a_gp3_IOPS_16000_throughput_1000",
 "RootDeviceName": "/dev/sda1",
 "RootDeviceType": "ebs",
 "SriovNetSupport": "simple",
 "VirtualizationType": "hvm",
 "DeprecationTime": "2025-07-05T14:10:42.000Z"
 }
]
}

Use q to exit out of the command line

AWS Resources for the aws cli method to launch ec2 instances.

aws cli examples

aws cli run instances command

Tutorial Launch Spot Instances

(note, it discourages the use of run-instances for launching spot instances, but they do provide an example method)

Launching EC2 Spot Instances using Run Instances API

Additional resources for spot instance provisioning.

Spot Instance Requests

To launch a Spot Instance with RunInstances API you create the configuration file as described below:

cat <<EoF > ./runinstances-config.json
{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.8xlarge",
 "ImageId": "ami-051ba52c157e4070c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}
EoF

Use the publically available AMI to launch an ondemand c6a.8xlarge ec2 instance using a gp3 volume with hyperthreading disabled

Note, we will be using a json file that has been preconfigured to specify the ImageId

Obtain the code using git

git clone -b main https://github.com/CMASCenter/pcluster-cmaq

cd pcluster-cmaq/json

Note, you will need to obtain a security group id from your IT administrator that allows ssh login access.
If this is enabled by default, then you can remove the –security-group-ids launch-wizard-with-tcp-access

Example command: note launch-wizard-with-tcp-access needs to be replaced by your security group ID, and your-pem key needs to be replaced by the name of your-pem.pem key.

aws ec2 run-instances --debug --key-name your-pem --security-group-ids launch-wizard-with-tcp-access --dry-run --region us-east-1 --cli-input-json file://runinstances-config.json

Use the aws –cpu-options to specify the number of cores to match the selected ec2 instance type (c6a.8xlarge has 16 cores) and limit the ThreadsPerCore to 1 to disable hyperthreading.

Command that works for UNC’s security group and pem key:

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --dry-run --ebs-optimized --cpu-options CoreCount=16,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.c6a.8xlarge.json

Once you have verified that the command above works with the –dry-run option, rerun it without as follows.

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --cpu-options CoreCount=16,ThreadsPerCore=1 --cli-input-json file://runinstances-config.gp3.c6a.8xlarge.json

Use q to quit to return to the command prompt.

Use the following command to obtain the public IP address of the machine.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep PublicIpAddress

 Documentation of Troubleshooting effort for CMAQv5.4+ on 12US1

Documentation of Troubleshooting effort for CMAQv5.4+ on 12US1

Public AMI contains the software and data to run 12US1 using CMAQv5.4+

Software was pre-installed and saved to a public ami.

The input data was also transferred from the AWS Open Data Program and installed on the EBS volume.

This chapter describes the process that was used to test and configure the c6a.48xlarge ec2 instance to run CMAQv5.4 for the 12US1 domain.

Todo: Need to create command line options to copy a public ami to a different region.

Verify that you can see the public AMI on the us-east-1 region.

aws ec2 describe-images --region us-east-1 --image-id ami-0aaa0cfeb5ed5763c

Output:

{
 "Images": [
 {
 "Architecture": "x86_64",
 "CreationDate": "2023-06-07T02:52:26.000Z",
 "ImageId": "ami-0aaa0cfeb5ed5763c",
 "ImageLocation": "440858712842/cmaqv5.4_c6a.48xlarge",
 "ImageType": "machine",
 "Public": true,
 "OwnerId": "440858712842",
 "PlatformDetails": "Linux/UNIX",
 "UsageOperation": "RunInstances",
 "State": "available",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": true,
 "Iops": 4000,
 "SnapshotId": "snap-0c2f11a82e76aac9b",
 "VolumeSize": 500,
 "VolumeType": "gp3",
 "Throughput": 1000,
 "Encrypted": false
 }
 },
 {
 "DeviceName": "/dev/sdb",
 "VirtualName": "ephemeral0"
 },
 {
 "DeviceName": "/dev/sdc",
 "VirtualName": "ephemeral1"
 }
],
 "EnaSupport": true,
 "Hypervisor": "xen",
 "Name": "cmaqv5.4_c6a.48xlarge",
 "RootDeviceName": "/dev/sda1",
 "RootDeviceType": "ebs",
 "SriovNetSupport": "simple",
 "VirtualizationType": "hvm",
 "DeprecationTime": "2025-06-07T02:52:26.000Z"
 }
]
}

Note that the above AMI has a the maximum throughput limit of 1000, but this AMI had an IOPS limit of 4000 which caused I/O issues documented below.

The solution is to use update the volume to a use the maximum value for IOPS of 16000, and then save the EC2 instance as a new AMI that will have the highest IOPS and throughput for the gp3 VolumeType.
The following is a screenshot of the option to do this within the AWS Web Interface. I will work on documenting a method to do this from the command line, but this will be saved for the advanced tutorial.

[image: EC2 Modify Volume]

AWS Resources for the aws cli method to launch ec2 instances.

aws cli exampmles

aws cli run instances command

Tutorial Launch Spot Instances

(note, it discourages the use of run-instances for launching spot instances, but they do provide an example method)

Launching EC2 Spot Instances using Run Instances API

Additional resources for spot instance provisioning.

Spot Instance Requests

To launch a Spot Instance with RunInstances API you create the configuration file as described below:

cat <<EoF > ./runinstances-config.json
{
 "DryRun": false,
 "MaxCount": 1,
 "MinCount": 1,
 "InstanceType": "c6a.48xlarge",
 "ImageId": "ami-0aaa0cfeb5ed5763c",
 "InstanceMarketOptions": {
 "MarketType": "spot"
 },
 "TagSpecifications": [
 {
 "ResourceType": "instance",
 "Tags": [
 {
 "Key": "Name",
 "Value": "EC2SpotCMAQv54"
 }
]
 }
]
}
EoF

{
“DryRun”: false,
“MaxCount”: 1,
“MinCount”: 1,
“InstanceType”: “c6a.48xlarge”,
“ImageId”: “ami-0aaa0cfeb5ed5763c”,
“InstanceMarketOptions”: {
“MarketType”: “spot”
},
“TagSpecifications”: [
{
“ResourceType”: “instance”,
“Tags”: [
{
“Key”: “Name”,
“Value”: “EC2SpotCMAQv54”
}
]
}
]
}

Use a publically available AMI to launch a c6a.48xlarge ec2 instance using a gp3 volume with 16000 IOPS

Launch a new instance using the AMI with the software loaded and request a spot instance for the c6a.8xlarge EC2 instance

Note, we will be using a json file that has been preconfigured to specify the ImageId

cd /shared/pcluster-cmaq

Note, you will need to obtain a security group id from your IT administrator that allows ssh login access.
If this is enabled by default, then you can remove the –security-group-ids launch-wizard-with-tcp-access

Example command: note launch-wizard-with-tcp-access needs to be replaced by your security group ID, and your-pem key needs to be replaced by the name of your-pem.pem key.

aws ec2 run-instances --debug --key-name your-pem --security-group-ids launch-wizard-with-tcp-access --dryrun --region us-east-1 --cli-input-json file://runinstances-config.json

Command that works for UNC’s security group and pem key:

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --dryrun --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.hyperthread-off.16000IOPS.json

Once you have verified that the command above works with the –dryrun option, rerun it without as follows.

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.hyperthread-off.16000IOPS.json

Example of security group inbound and outbound rules required to connect to EC2 instance via ssh.

[image: Inbound Rule]

[image: Outbound Rule]

(I am not sure if you can create a security group rule from the aws command line.)

Additional resources

CLI commands to create Security Group

Use the following command to obtain the public IP address of the machine.

This command is commented out, as the instance hasn’t been created yet. keeping the instructions for documentation purposes.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-0aaa0cfeb5ed5763c" | grep PublicIpAddress

Login to the ec2 instance

Note, the following command must be modified to specify your key, and ip address (obtained from the previous command):

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@ip.address

Load the environment modules

module avail
module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

Run CMAQv5.4 for the 12km Listos Training Case

Input data is available for a subdomain of the 12km 12US1 case.

GRIDDESC

'2018_12Listos'
'LamCon_40N_97W' 1812000.000 240000.000 12000.000 12000.000 25 25 1

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
./run_cctm_2018_12US1_listos_32pe.csh |& tee ./run_cctm_2018_12US1_listos_32pe.log

Successful output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 69.9
02 2018-08-06 64.7
03 2018-08-07 66.5
 Total Time = 201.10
 Avg. Time = 67.03

Run CMAQv5.4 for the full 12US1 Domain on c6a.48xlarge with 192 vcpus

GRIDDESC
' ' ! end coords. grids: name; xorig yorig xcell ycell ncols nrows nthik
'12US1'
'LAM_40N97W' -2556000. -1728000. 12000. 12000. 459 299 1

Input Data for the 12US1 domain is available for a 2 day benchmark 12US1 Domain for both netCDF4 compressed (.nc4) and classic netCDF-3 compression (.nc).
The 96 pe run on the c6a.48xlarge instance will take approximately 120 minutes for 1 day, or 240 minutes for the full 2 day benchmark.

Options that were used to disable multi-trheading:

--cpu-options (structure)

 The CPU options for the instance. For more information, see Optimize CPU options in the Amazon EC2 User Guide .

 CoreCount -> (integer)

 The number of CPU cores for the instance.

 ThreadsPerCore -> (integer)

 The number of threads per CPU core. To disable multithreading for the instance, specify a value of 1 . Otherwise, specify the default value of 2 .

--cpu-options CoreCount=integer,ThreadsPerCore=integer,AmdSevSnp=string

JSON Syntax:

{
 "CoreCount": integer,
 "ThreadsPerCore": integer,
 "AmdSevSnp": "enabled"|"disabled"
}

Use command line to submit the job. This single virtual machine does not have a job scheduler such as slurm installed.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts

./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.8x12.ncclassic.csh |& tee ./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.8x12.ncclassic.2nd.log

Spot Pricing cost for Linux in US East Region

c6a.48xlarge	$5.88 per Hour

Rerunning the 12US1 case on 8x12 processors - for total of 96 processors.

It took about 39 minutes of initial I/O prior to the model starting using this gp3 ami. Fahim was not able to reproduce this performance issue.
I am not sure how to diagnose the issue. When I upgraded the AMI to use an io2 disk, this poor I/O issue was resolved.

Once the model starts running (see Processing cmpleted …) in the log file, then use htop to view the CPU usage.

Login to the virtual machine and then run the following command.

./htop

[image: Screenshot of HTOP for CMAQv5.4 on c6a.48xlarge]

Using Cloudwatch to see the CPU utilization.

Note that we are using 96 pes of the 192 virtual cpus, so the maximum cpu utilization reported would be 50%.

[image: Screenshot of Cloudwatch for CMAQv5.4 on c6a.48xlarge using spot pricing]

Successful run output, but it is taking too long (twice as long as on the Parallel Cluster).

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 6320.8
02 2017-12-23 5409.6
 Total Time = 11730.40
 Avg. Time = 5865.20

Perhaps the instance is being i/o throttled?

ebs-volume-io-queue-latency-issues

Trying this CloudWatch Report

EBS Volume Throughput Limits

This report is saying that the maximum throughput for this gp3 volume is 1,000 MiB/s, and the baseline throughtput Limit is 125 MiB/s.
Need to run this same report for the io2 volume, and see what the values are.

EBS Volume Throughput

Volume ID: vol-050662148aef41b8f
Instance ID: i-0c2615494c0a89ea9

You can use the AWS Web Interface to get an estimate of the savings of using a SPOT versus OnDEMAND Instance.

Save volume as a snapshot

saving the volume as a snapshot so that I can have a copy of the log files to show the poor performance of the spot instance.
After the snapshot is created then I will delete the instance.
The snapshot name is c6a.48xlarge.cmaqv54.spot, snap-0cc3df82ba5bf5da8

Clean up Virtual Machine

Find the InstanceID using the following command on your local machine.

aws ec2 describe-instances --region=us-east-1 | grep InstanceId

Output

i-xxxx

Terminate the instance

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

Commands for terminating EC2 instance from CLI

Create c6a.48xlarge with hyperthreading disabled

aws ec2 run-instances --debug --key-name cmaqv5.4 --security-group-ids launch-wizard-179 --region us-east-1 --ebs-optimized --dry-run --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.json

(note, take out –dry-run option after you try and verify it works)

Obtain the public IP address for the virtual machine

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-0aaa0cfeb5ed5763c" | grep PublicIpAddress

Login to the machine
`## ssh -v -Y -i ~/your-pem.pem ubuntu@your-ip-address

Retry the Listos run script.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
./run_cctm_2018_12US1_listos_32pe.csh |& tee ./run_cctm_2018_12US1_listos_32pe.log

Use HTOP to view performance.

htop

output

[image: Screenshot of HTOP]

Successful output

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 87.6
02 2018-08-06 77.9
03 2018-08-07 77.2
 Total Time = 242.70
 Avg. Time = 80.90

Retried the 12US1 benchmark case but the i/o was still too slow.

Used the AWS Web Interface to upgrade to an io1 system

Choosing EBS Storage Type

After upgrading to the io1 volume, the performance was much improved.

Now, we need to examine the cost, and whether it would cost less for an io2 volume.

[image: Screenshot of AWS Web Interface after Storage Upgrade to io1]

[image: HTOP after upgrade storage]

Additional information about how to calculate storage pricing.

EBS Pricing

Good comparison of EBS vs EFS, and discussion of using Cloud Volumes ONTAP for data tiering between S3 Buckets and EBS volumes.

Comparison between EBS and EFS

The aws cli can also be used to modify the volume as per these instructions.

aws cli modify volume

Output

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
`Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3045.2
02 2017-12-23 3351.8
 Total Time = 6397.00
 Avg. Time = 3198.50

Saved the EC2 instance as an AMI and made that ami public.

Use new ami instance with faster storage (io1) to create c6a.48xlarge ec2 instance

Note: these command should work, using a runinstance-config.jason file that is in the /shared/pcluster-cmaq directory. (it has already been edited to specify the ami listed below.)

The your-key.pem and the runinstance-config.jason file should be copied to the same directory before using the aws cli instructions below.

New AMI instance name to use for CMAQv5.4 on c6a.48xlarge using 500 GB io1 Storage.

ami-031a6e4499abffdb6

Edit runinstances-config.json to use the new ami.

Add the following line:

 "ImageId": "ami-031a6e4499abffdb6",

Create new instance

Note, you will need to obtain a security group id from your IT administrator that allows ssh login access.
If this is enabled by default, then you can remove the –security-group-ids your-security-group-with-ssh-access-to-Instance option.

Note, you will need to create or have a keypair that will be used to login to the ec2 instance that you create.

Replacing Key Pair

Create c6a.48xlarge instance:

aws ec2 run-instances --debug --key-name your-pem --security-group-ids your-security-group-with-ssh-access-to-Instance --region us-east-1 --ebs-optimized --dry-run --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.json

(take out –dryrun option after you see the following message:

botocore.exceptions.ClientError: An error occurred (DryRunOperation) when calling the RunInstances operation: Request would have succeeded, but DryRun flag is set.

Re-try creating the c5a.48xlarge instance without the dry-run option::

aws ec2 run-instances --debug --key-name your-pem --security-group-ids your-security-group-with-ssh-access-to-Instance --region us-east-1 --ebs-optimized --cpu-options CoreCount=96,ThreadsPerCore=1 --cli-input-json file://runinstances-config.json

Check that the ec2 instance is running using the following command.

aws ec2 describe-instances --region=us-east-1

Use the following command to obtain the IP address

aws ec2 describe-instances --region=us-east-1 | grep PublicIpAddress

Login

ssh -v -Y -i ~/your-pem.pem ubuntu@your-publicIpAddress

Load environment modules

module avail

module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

Change to the scripts directory

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Use lscpu to confirm that there are 96 processors on the c6a.48xlarge ec2 instance that was created with hyperthreading turned off.

lscpu

Output:

Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 48 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 96
 On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
 Model name: AMD EPYC 7R13 Processor
 CPU family: 25
 Model: 1
 Thread(s) per core: 1
 Core(s) per socket: 48
 Socket(s): 2
 Stepping: 1
 BogoMIPS: 5299.98
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxs
 r_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq m
 onitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_l
 egacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 a
 vx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat
 npt nrip_save vaes vpclmulqdq rdpid
Virtualization features:
 Hypervisor vendor: KVM
 Virtualization type: full
Caches (sum of all):
 L1d: 3 MiB (96 instances)
 L1i: 3 MiB (96 instances)
 L2: 48 MiB (96 instances)
 L3: 384 MiB (12 instances)
NUMA:
 NUMA node(s): 4
 NUMA node0 CPU(s): 0-23
 NUMA node1 CPU(s): 24-47
 NUMA node2 CPU(s): 48-71
 NUMA node3 CPU(s): 72-95
Vulnerabilities:
 Itlb multihit: Not affected
 L1tf: Not affected
 Mds: Not affected
 Meltdown: Not affected
 Mmio stale data: Not affected
 Retbleed: Not affected
 Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
 Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, RSB filling, PBRSB-eIBRS Not affected
 Srbds: Not affected
 Tsx async abort: Not affected

Login to the ec2 instance again, so that you have two windows logged into the machine.

ssh -Y -i ~/your-pem.pem ubuntu@your-ip-address

Run 12US1 Listos Training 3 Day benchmark Case on 32 pe (this will take less than 2 minutes)

./run_cctm_2018_12US1_listos_32pe.csh | & tee ./run_cctm_2018_12US1_listos_32pe.2nd.log

Successful output

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 35.7
02 2018-08-06 35.2
03 2018-08-07 36.1
 Total Time = 107.00
 Avg. Time = 35.66

Download input data for 12NE3 1 day Benchmark case

Instructions to copy data from the s3 bucket to the ec2 instance and run this benchmark.

cd /shared/pcluster-cmaq/

Examine the command line options that are used to download the data. Note, that we can use the –nosign option, as the data is available from the CMAS Open Data Warehouse on AWS.

cat s3_copy_12NE3_Bench.csh

Output

#!/bin/csh -f
#Script to download enough data to run START_DATE 201522 and END_DATE 201523 for 12km Northeast Domain
#Requires installing aws command line interface
#https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#cliv2-linux-install
#Total storage required is 56 G

setenv AWS_REGION "us-east-1"

aws s3 cp --no-sign-request --recursive s3://cmas-cmaq/CMAQv5.4_2018_12NE3_Benchmark_2Day_Input /shared/data/

Use the aws s3 copy command to copy data from the CMAS Data Warehouse Open Data S3 bucket.

./s3_copy_12NE3_Bench.csh

Link the data directory on /shared/data

cd /shared/build/openmpi_gcc/CMAQ_v54+/data
ln -s /shared/data/2018_12NE3 .

Edit the 12US3 Benchmark run script to use the gcc compiler and to output all species to CONC output file.

vi run_cctm_Bench_2018_12NE3.c6a48xlarge.csh

change

 setenv compiler intel

to

 setenv compiler gcc

Comment out the CONC_SPCS setting that limits them to only 12 species

 # setenv CONC_SPCS "O3 NO ANO3I ANO3J NO2 FORM ISOP NH3 ANH4I ANH4J ASO4I ASO4J"

Run the 12US3 Benchmark case

./run_cctm_Bench_2018_12NE3.c6a48xlarge.csh |& tee ./run_cctm_Bench_2018_12NE3.c6a48xlarge.32pe.log

Successful output for 12 species output in the 3-D CONC file took 7.4 minutes to run 1 day

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 445.19
 Total Time = 445.19
 Avg. Time = 445.19

Successful output for all species output in the 3-D CONC File (222 variables)

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 444.34
 Total Time = 444.34
 Avg. Time = 444.34

Todo: look into process pinning. (will it make a difference on a single VM for number of cores less than 96?)

Compare to timings available in Table 3-1 Example of job scenarios at EPA for a single day simulation.

Domain 	 Domain size 	Species Tracked 	Input files size 	Output files size 	Run time (# cores)
2018 North East US 	100 X 105 X 35 	225 	 26GB 	 2GB 	 15 min/day (32)

Run 12US1 2 day benchmark case on 96 processors

./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.12x8.ncclassic.csh |& tee ./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.12x8.ncclassic.log

Verify that it is using 99% of each of the 96 cores using htop

htop

Successful run timing

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3070.4
02 2017-12-23 3386.7
 Total Time = 6457.10
 Avg. Time = 3228.55

Compare timing to output available CMAQ User Guide: Running CMAQ

Find the InstanceID using the following command on your local machine.

aws ec2 describe-instances --region=us-east-1 | grep InstanceId

Output

i-xxxx

Stop the instance

aws ec2 stop-instances --region=us-east-1 --instance-ids i-xxxx

Get the following error message.

aws ec2 stop-instances –region=us-east-1 –instance-ids i-041a702cc9f7f7b5d

An error occurred (UnsupportedOperation) when calling the StopInstances operation: You can’t stop the Spot Instance ‘i-041a702cc9f7f7b5d’ because it is associated with a one-time Spot Instance request. You can only stop Spot Instances associated with persistent Spot Instance requests.

Note sure how to do a persistent spot instance request .

Terminate Instance

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

Try creating the gp3 version of the ami using the Nitro Hypervisor, and see if that improves the performance without the cost of the io1 volume.

no - the nitro is being used.

“Hypervisor”: “xen”, - this applies to the nitro hypervisor according to the documentation.

Try creating the gp3 ami from the web interface, and see if you can reproduce the performance issues or not. If it performs well, then use the –describe-instances command to see what is different between the ami created from web interface and that created from the command line.

 Save output data and run script logs (optional)

Save output data and run script logs (optional)

Copy the log files and the output data to an s3 bucket.

cd /shared/pcluster-cmaq/s3_scripts

cat s3_upload.c6a.2xlarge.csh

Output

#!/bin/csh -f
Script to upload output data to S3 bucket
need to set up your AWS credentials prior to running this script
aws configure
NOTE: need permission to create a bucket and write to an s3 bucket.

mkdir /shared/data/output/logs
mkdir /shared/data/output/scripts

cp /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/*.log /shared/data/output/logs
cp /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/*.csh /shared/data/output/scripts

setenv BUCKET c6a.2xlarge.cmaqv5.4

aws s3 mb s3://$BUCKET
aws s3 cp --recursive /shared/data/output s3://BUCKET

Set your aws credentials by running the command

aws configure

Edit the script to create a unique bucket name

Run the script

./s3_upload.c6a.2xlarge.csh

or

Save the full input data, run scripts, output data and logs to an AMI that is owned by your account.

Go to the EC2 Dashboard

EC2 Resources on AWS Web Console

Click on Instances Running

Select the checkbox next to the c6a.2xlarge instance name

[image: Select Instance on EC2 Dashboard]

Select Actions Pulldown menu and select Images and templates and Create Image.

Note, this will log you out of the ec2 instance, and should be done after all runs have been completed and your are ready to save the image.

[image: Create Image on EC2 Dashboard]

Fill out the name of the image

Name the instance to help identify the ec2 instance type, CMAQ version installed, and perhaps the input/output data available

[image: Confirm Save Image on EC2 Dashboard]

Click Save Image

Wait until the image status available before terminating the ec2 instance

Click on AMI under the left menu, and then search for the image name and confirm that the status has a green checkmark and available

 Stop Instance

Stop Instance

Go to the EC2 Dashboard

EC2 Resources on AWS Web Console

Click on Instances Running

Select the checkbox next to the c6a.2xlarge instance name

[image: Select Instance on EC2 Dashboard]

Select Instance State Pulldown menu and select stop instance

This will stop charges from being incurred by the ec2 instance, but you will still be charged for the gp3 volume until the ec2 instance is terminated.
Typically, you would choose to stop, and then restart the instance if you plan to do additional work on it within a few hours.
Otherwise, to avoid incurring costs, it is better to terminate the instance, and then recreate later from either the public AMI or your newly saved AMI.

Select Instance State Pulldown menu and select terminate instance.

[image: Terminate Instance on EC2 Dashboard]

When the pop-up menu asks if you are sure you want to terminate the instance, click on the orange Terminate button.

[image: Confirm Terminate Instance on EC2 Dashboard]

 Use CLI to Create Single VM

Use CLI to Create Single VM

If you are not able to use the AWS Web Console, an alternate way to create a Single VM is using the AWS Command Line Interface (CLI)

Creating an EC2 instance from the Command Line is easy to do. In this tutorial we will give examples on how to create an ec2-instance that uses a public AMI that contains the sofware and benchmark data pre-loaded.

Create a single Virtual Machine (VM) using an ami with software pre-loaded using either a c6a.2xlarge, c6a.8xlarge or c6a.48xlarge instance with gp3 filesystem.

	1.2. Create a VM using the AWS Command Line

 Run CMAQv5.4 on Single VM

Run CMAQv5.4 on Single VM

Using VM that was created using either the Web Console or the CLI

CMAQv5.4 Benchmarks

	Benchmark Name

	Grid Domain

	EC2 Instance

	vCPU

	Cores

	Memory

	Network Performance

	Storage (EBS Only)

	On Demand Hourly Cost

	Spot Hourly Cost

	Training 12km Listos

	(25x25x35)

	c6a.2xlarge

	8

	4

	16 GiB

	Up to 12500 Megabit

	gp3

	0.306

	0.2879

	12NE3

	(100x100x35)

	c6a.8xlarge

	32

	16

	64 GiB

	12500 Megabit

	gp3

	1.224

	1.0008

	12US1

	(459x299x35)

	c6a.48xlarge

	192

	96

	384 GiB

	50000 Megabit

	gp3

	7.344

	5.5809

Data in table above is from the following:
Sizing and Price Calculator from AWS

Run CMAQv5.4+ on a single Virtual Machine (VM) using an ami with software pre-loaded to run on either a c6a.2xlarge, c6a.8xlarge or c6a.48xlarge instance with gp3 filesystem.

	1.3. Run CMAQv5.4 on c6a.2xlarge

 Run CMAQv5.4 on c6a.48xlarge

Run CMAQv5.4 on c6a.48xlarge

Obtain IP address

Use either the AWS Web Console, or use the following command line option:

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep PublicIpAddress

Login to the ec2 instance

Note, the following command must be modified to specify your key, and ip address (obtained from the previous command):
Note, you will get a connection refused if you try to login prior to the ec2 instance being ready to run (takes ~5 minutes for initialization).

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@ip.address

Login to the ec2 instance again, so that you have two windows logged into the machine.

ssh -Y -i ~/downloads/your-pem.pem ubuntu@your-ip-address

Load the environment modules

module avail

module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

Update the pcluster-cmaq repo using git

cd /shared/pcluster-cmaq

git pull

Run CMAQv5.4 for 12US1 Listos Training 3 Day benchmark Case on 32 pe

(this will take less than 2 minutes)

Input data is available for a subdomain of the 12km 12US1 case.

GRIDDESC

'2018_12Listos'
'LamCon_40N_97W' 1812000.000 240000.000 12000.000 12000.000 25 25 1

Use command line to submit the job. This single virtual machine does not have a job scheduler such as slurm installed.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
./run_cctm_2018_12US1_listos_32pe.csh |& tee ./run_cctm_2018_12US1_listos_32pe.log

Use HTOP to view performance.

htop

output

[image: Screenshot of HTOP]

Successful output

tail -n 20 run_cctm_2018_12US1_listos_32pe.log

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 34.3
02 2018-08-06 34.5
03 2018-08-07 35.2
 Total Time = 104.00
 Avg. Time = 34.66

If your total time was slower then rerun the script.
The input data may need to be preloaded from the snapshot to get the best performance.
See instructions below for the 12US1 benchmark.

Change to the scripts directory

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Use lscpu to verify number of cores

Verify that there are 96 cores (48cores per socket x 2 sockets) on the c6a.48xlarge ec2 instance that was created with hyperthreading turned off.

lscpu

Output:

Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 48 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 96
 On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
 Model name: AMD EPYC 7R13 Processor
 CPU family: 25
 Model: 1
 Thread(s) per core: 1
 Core(s) per socket: 48
 Socket(s): 2
 Stepping: 1
 BogoMIPS: 5299.98
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxs
 r_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq m
 onitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_l
 egacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 a
 vx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat
 npt nrip_save vaes vpclmulqdq rdpid
Virtualization features:
 Hypervisor vendor: KVM
 Virtualization type: full
Caches (sum of all):
 L1d: 3 MiB (96 instances)
 L1i: 3 MiB (96 instances)
 L2: 48 MiB (96 instances)
 L3: 384 MiB (12 instances)
NUMA:
 NUMA node(s): 4
 NUMA node0 CPU(s): 0-23
 NUMA node1 CPU(s): 24-47
 NUMA node2 CPU(s): 48-71
 NUMA node3 CPU(s): 72-95
Vulnerabilities:
 Itlb multihit: Not affected
 L1tf: Not affected
 Mds: Not affected
 Meltdown: Not affected
 Mmio stale data: Not affected
 Retbleed: Not affected
 Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
 Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, RSB filling, PBRSB-eIBRS Not affected
 Srbds: Not affected
 Tsx async abort: Not affected

Download input data for 12NE3 1 day Benchmark case (skip)

Instructions to copy data from the s3 bucket to the ec2 instance and run this benchmark.

(note, you can skip this step as the input data has already been installed.)

cd /shared/pcluster-cmaq/s3_scripts

Examine the command line options that are used to download the data. Note, that we can use the –nosign option, as the data is available from the CMAS Open Data Warehouse on AWS.

cat s3_copy_12NE3_Bench.csh

Output

#!/bin/csh -f
#Script to download enough data to run START_DATE 201522 and END_DATE 201523 for 12km Northeast Domain
#Requires installing aws command line interface
#https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#cliv2-linux-install
#Total storage required is 56 G

setenv AWS_REGION "us-east-1"

aws s3 cp --no-sign-request --recursive s3://cmas-cmaq/CMAQv5.4_2018_12NE3_Benchmark_2Day_Input /shared/data/

change the permissions on the script (skip)

chmod 755 s3_copy_12NE3_Bench.csh

Use the aws s3 copy command to copy data from the CMAS Data Warehouse Open Data S3 bucket. (skip)

./s3_copy_12NE3_Bench.csh

Link the data directory on /shared/data (skip)

cd /shared/build/openmpi_gcc/CMAQ_v54+/data
ln -s /shared/data/2018_12NE3 .

Edit the 12US3 Benchmark run script

Verify that it uses the gcc compiler and to output all species to CONC output file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

cp run_cctm_Bench_2018_12NE3.c6a.2xlarge.csh run_cctm_Bench_2018_12NE3.c6a.48xlarge.csh

vi run_cctm_Bench_2018_12NE3.c6a.48xlarge.csh

Verify that the gcc compiler is specified:

 setenv compiler gcc

Verify that the CONC_SPCS setting that limits them to only 12 species is commented out:

 # setenv CONC_SPCS "O3 NO ANO3I ANO3J NO2 FORM ISOP NH3 ANH4I ANH4J ASO4I ASO4J"

Change NPCOL x NPROW to use 12 x 8

 @ NPCOL = 12; @ NPROW = 8

Run the 12US3 Benchmark case on 96 processors

./run_cctm_Bench_2018_12NE3.c6a.48xlarge.csh |& tee ./run_cctm_Bench_2018_12NE3.c6a.48xlarge.96pe.log

Use HTOP to view performance.

htop

output

[image: Screenshot of HTOP]

Successful output for all species output in the 3-D CONC File (222 variables)

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 236.27
 Total Time = 236.27
 Avg. Time = 236.27

Run the 12US3 Benchmark case on 32 processors

Copy run script

cp run_cctm_Bench_2018_12NE3.c6a.48xlarge.csh run_cctm_Bench_2018_12NE3.c6a.48xlarge.32pe.csh

Edit run script to use 32 processors

vi run_cctm_Bench_2018_12NE3.c6a.48xlarge.32pe.csh

Change NPCOL x NPROW to use 4 x 8

 @ NPCOL = 4; @ NPROW = 8

Run script interactively from the command line.

./run_cctm_Bench_2018_12NE3.c6a.48xlarge.32pe.csh |& tee ./run_cctm_Bench_2018_12NE3.c6a48xlarge.32pe.log

Successful output for 12 species output in the 3-D CONC file took 7.4 minutes to run 1 day

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 445.19
 Total Time = 445.19
 Avg. Time = 445.19

Successful output for all species output in the 3-D CONC File (222 variables)

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 32
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 444.34
 Total Time = 444.34
 Avg. Time = 444.34

Compare to timings available in Table 3-1 Example of job scenarios at EPA for a single day simulation.

Domain 	 Domain size 	Species Tracked 	Input files size 	Output files size 	Run time (# cores)
2018 North East US 	100 X 105 X 35 	225 	 26GB 	 2GB 	 15 min/day (32)

Pre-warm /shared volume

Note: I/O latency issues have been observed running the 12US1 Benchmark.
According to AWS the volume needs to be initialized to avoid this:

Empty EBS volumes receive their maximum performance the moment that they are created and do not require initialization (formerly known as pre-warming).

For volumes that were created from snapshots, the storage blocks must be pulled down from Amazon S3 and written to the volume before you can access them. This preliminary action takes time and can cause a significant increase in the latency of I/O operations the first time each block is accessed. Volume performance is achieved after all blocks have been downloaded and written to the volume.

lsblk

output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
loop0 7:0 0 24.4M 1 loop /snap/amazon-ssm-agent/6312
loop1 7:1 0 24.8M 1 loop /snap/amazon-ssm-agent/6563
loop2 7:2 0 55.6M 1 loop /snap/core18/2751
loop3 7:3 0 55.7M 1 loop /snap/core18/2785
loop4 7:4 0 63.5M 1 loop /snap/core20/1891
loop5 7:5 0 63.4M 1 loop /snap/core20/1950
loop6 7:6 0 111.9M 1 loop /snap/lxd/24322
loop7 7:7 0 53.3M 1 loop /snap/snapd/19361
loop8 7:8 0 53.3M 1 loop /snap/snapd/19457
nvme0n1 259:0 0 500G 0 disk
├─nvme0n1p1 259:1 0 499.9G 0 part /
├─nvme0n1p14 259:2 0 4M 0 part
└─nvme0n1p15 259:3 0 106M 0 part /boot/efi

Install fio

sudo apt-get install -y fio

Use the following command to initialize the gp3 volume

sudo fio --filename=/dev/nvme0n1 --rw=read --bs=1M --iodepth=32 --ioengine=libaio --direct=1 --name=volume-initialize

This may take 30 minutes.

obs: 1 (f=1): [R(1)][11.9%][r=298MiB/s][r=298 IOPS][eta 29m:34s]

Output

volume-initialize: (g=0): rw=read, bs=(R) 1024KiB-1024KiB, (W) 1024KiB-1024KiB, (T) 1024KiB-1024KiB, ioengine=libaio, iodepth=32
fio-3.28
Starting 1 process
Jobs: 1 (f=1): [R(1)][100.0%][r=4163MiB/s][r=4163 IOPS][eta 00m:00s]
volume-initialize: (groupid=0, jobs=1): err= 0: pid=2667: Wed Jun 28 14:14:50 2023
 read: IOPS=4194, BW=4194MiB/s (4398MB/s)(500GiB/122077msec)
 slat (usec): min=11, max=334, avg=17.47, stdev= 8.22
 clat (usec): min=1323, max=15837, avg=7611.47, stdev=423.70
 lat (usec): min=1348, max=15852, avg=7629.04, stdev=423.47
 clat percentiles (usec):
 | 1.00th=[6521], 5.00th=[6915], 10.00th=[7504], 20.00th=[7570],
 | 30.00th=[7635], 40.00th=[7635], 50.00th=[7701], 60.00th=[7701],
 | 70.00th=[7701], 80.00th=[7701], 90.00th=[7767], 95.00th=[7832],
 | 99.00th=[8455], 99.50th=[8586], 99.90th=[9110], 99.95th=[9372],
 | 99.99th=[9896]
 bw (MiB/s): min= 4156, max= 7176, per=100.00%, avg=4196.35, stdev=221.97, samples=244
 iops : min= 4156, max= 7176, avg=4196.36, stdev=221.97, samples=244
 lat (msec) : 2=0.26%, 4=0.05%, 10=99.68%, 20=0.01%
 cpu : usr=0.52%, sys=8.80%, ctx=495095, majf=0, minf=8208
 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=100.0%, >=64=0.0%
 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.1%, 64=0.0%, >=64=0.0%
 issued rwts: total=512000,0,0,0 short=0,0,0,0 dropped=0,0,0,0
 latency : target=0, window=0, percentile=100.00%, depth=32

Run status group 0 (all jobs):
 READ: bw=4194MiB/s (4398MB/s), 4194MiB/s-4194MiB/s (4398MB/s-4398MB/s), io=500GiB (537GB), run=122077-122077msec

Disk stats (read/write):
 nvme0n1: ios=2045043/85, merge=0/35, ticks=15274723/407, in_queue=15275131, util=99.97%

Run 12US1 2 day benchmark case on 96 processors

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/
./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.8x12.ncclassic.csh | & tee run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.8x12.ncclassic.16000IOPS.log

Successful timing

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 2979.7
02 2017-12-23 3333.7
 Total Time = 6313.40
 Avg. Time = 3156.70

Run 12US1 2 day benchmark case on 96 processors

./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.12x8.ncclassic.csh |& tee ./run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.12x8.ncclassic.log

Verify that it is using 99% of each of the 96 cores using htop

htop

Check the timings while the job is still running using the following command

cd /shared/data/output/output_v54_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_8x12_classic

grep 'Processing completed' CTM_LOG_001*

Output:

 Processing completed... 9.0214 seconds
 Processing completed... 8.9559 seconds
 Processing completed... 8.9168 seconds
 Processing completed... 8.9294 seconds
 Processing completed... 8.9067 seconds
 Processing completed... 12.6627 seconds
 Processing completed... 9.4496 seconds
 Processing completed... 8.8013 seconds
 Processing completed... 8.8550 seconds
 Processing completed... 8.8905 seconds
 Processing completed... 8.8481 seconds
 Processing completed... 8.8778 seconds
 Processing completed... 8.8695 seconds
 Processing completed... 8.9117 seconds
 Processing completed... 8.9099 seconds

Successful timing using io2 filesystem

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3003.4
02 2017-12-23 3321.5
 Total Time = 6324.90
 Avg. Time = 3162.45

Successful run timing using gp3 filesystem

(sometimes the timing is 2x worse, the cause for this variabilities in performance is most likely due to the volume not being initialized)

EBS Initialization to avoid latency issues

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3070.4
02 2017-12-23 3386.7
 Total Time = 6457.10
 Avg. Time = 3228.55

Compare timing to output available CMAQ User Guide: Running CMAQ

Run 12US1 benchmark again using gp3 volume

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 2963.5
02 2017-12-23 3314.0
 Total Time = 6277.50
 Avg. Time = 3138.75

Stop the instance (skip)

aws ec2 stop-instances --region=us-east-1 --instance-ids i-xxxx

Get the following error message.

aws ec2 stop-instances –region=us-east-1 –instance-ids i-041a702cc9f7f7b5d

An error occurred (UnsupportedOperation) when calling the StopInstances operation: You can’t stop the Spot Instance ‘i-041a702cc9f7f7b5d’ because it is associated with a one-time Spot Instance request. You can only stop Spot Instances associated with persistent Spot Instance requests.

To Do: Investigate how to do a persistent spot instance request .

Terminate Instance

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

Verify that the instance is being shut down.

aws ec2 describe-instances --region=us-east-1

Additional resources

CLI commands to create Security Group

 Run CMAQv5.4 on c6a.8xlarge

Run CMAQv5.4 on c6a.8xlarge

Obtain IP address

Obtain IP address from AWS Web Console or use the following AWS CLI command to obtain the public IP address of the machine.

aws ec2 describe-instances --region=us-east-1 --filters "Name=image-id,Values=ami-051ba52c157e4070c" | grep PublicIpAddress

Login to the ec2 instance

(may need to wait 5 minutes for the ec2 instance to initialize and be ready for login)

Note, the following command must be modified to specify your key, and ip address (obtained from the previous command):

ssh -v -Y -i ~/downloads/your-pem.pem ubuntu@ip.address

Login to the ec2 instance again

so that you have two windows logged into the machine.

ssh -Y -i ~/your-pem.pem ubuntu@your-ip-address

Load the environment modules

module avail

module load ioapi-3.2/gcc-11.3.0-netcdf mpi/openmpi-4.1.2 netcdf-4.8.1/gcc-11.3

Update the pcluster-cmaq repo using git

cd /shared/pcluster-cmaq

git pull

Verify that the input data is available

Input Data for the smallest benchmark

ls -lrt /shared/data/12US1_LISTOS/*

Input Data for the 12NE3 benchmark

ls -lrt /shared/data/2018_12NE3/*

Run CMAQv5.4 for 12US1 Listos Training 3 Day benchmark Case on 32 pe

Input data is available for a subdomain of the 12km 12US1 case.

GRIDDESC

'2018_12Listos'
'LamCon_40N_97W' 1812000.000 240000.000 12000.000 12000.000 25 25 1

Edit the run script to run on 16 cores

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
cp run_cctm_2018_12US1_listos_32pe.csh run_cctm_2018_12US1_listos_16pe.csh

change NPCOLxNPROW to 4x4

Use command line to submit the job.

This single virtual machine does not have a job scheduler such as slurm installed.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts
./run_cctm_2018_12US1_listos_16pe.csh | & tee ./run_cctm_2018_12US1_listos_16pe.c6a.8xlarge.log

Use HTOP to view performance.

htop

output

[image: Screenshot of HTOP]

Successful output

After the benchmark is complete, use the following command to view the timing results.

tail -n 20 run_cctm_2018_12US1_listos_16pe.c6a.8xlarge.log

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-08-05
End Day: 2018-08-07
Number of Simulation Days: 3
Domain Name: 2018_12Listos
Number of Grid Cells: 21875 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 16
 All times are in seconds.

Num Day Wall Time
01 2018-08-05 67.1
02 2018-08-06 58.9
03 2018-08-07 60.9
 Total Time = 186.90
 Avg. Time = 62.30

Note, the run time took longer, try re-running the run script.
The second time that you run, the performance may be better, as the input data was already loaded from the snapshot.
In the next section, you will learn how to preload the data.

The c6a.8xlarge also has 16 cpus and larger cache sizes than the c6a.2xlarge (4 cores), which you can see when you compare output of the lscpu command.

Change to the scripts directory

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Use lscpu to verify number of cores

Verify that there are 16 cores on the c6a.8xlarge ec2 instance that was created with hyperthreading turned off.

lscpu

Output:

Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 48 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 16
 On-line CPU(s) list: 0-15
Vendor ID: AuthenticAMD
 Model name: AMD EPYC 7R13 Processor
 CPU family: 25
 Model: 1
 Thread(s) per core: 1
 Core(s) per socket: 16
 Socket(s): 1
 Stepping: 1
 BogoMIPS: 5299.99
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt p
 dpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16
 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3
 dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt
 clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
Virtualization features:
 Hypervisor vendor: KVM
 Virtualization type: full
Caches (sum of all):
 L1d: 512 KiB (16 instances)
 L1i: 512 KiB (16 instances)
 L2: 8 MiB (16 instances)
 L3: 64 MiB (2 instances)
NUMA:
 NUMA node(s): 2
 NUMA node0 CPU(s): 0-7
 NUMA node1 CPU(s): 8-15
Vulnerabilities:
 Itlb multihit: Not affected
 L1tf: Not affected
 Mds: Not affected
 Meltdown: Not affected
 Mmio stale data: Not affected
 Retbleed: Not affected
 Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
 Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, RSB filling, PBRSB-eIBRS Not affected
 Srbds: Not affected
 Tsx async abort: Not affected

Edit the 12US3 Benchmark run script to use the gcc compiler and to output all species to CONC output file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

cp run_cctm_Bench_2018_12NE3.c6a.2xlarge.csh run_cctm_Bench_2018_12NE3.c6a.8xlarge.csh

Change the NPCOL, NPROW to run on 16 cores

 @ NPCOL = 4; @ NPROW = 4

Run the 12US3 Benchmark case

./run_cctm_Bench_2018_12NE3.c6a.8xlarge.csh |& tee ./run_cctm_Bench_2018_12NE3.c6a.8xlarge.16pe.log

Use HTOP to view performance.

htop

output

[image: Screenshot of HTOP]

Note, this 12NE3 Domain uses more memory, and takes longer than the 12LISTOS-Training Domain.
It also takes longer to run using 16 cores on c6a.8xlarge instance than on 32 cores on c6a.48xlarge instance.

Successful output for 222 variables output in the 3-D CONC file took 16.4 minutes to run 1 day

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2018-07-01
End Day: 2018-07-01
Number of Simulation Days: 1
Domain Name: 2018_12NE3
Number of Grid Cells: 367500 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 16
 All times are in seconds.

Num Day Wall Time
01 2018-07-01 986.60
 Total Time = 986.60
 Avg. Time = 986.60

Compared to the timing for running on 32 processors, which took 444.34 seconds, this is a factor of 2.2 scalability of adding 2x as many cores.

Find the InstanceID using the following command on your local machine.

aws ec2 describe-instances --region=us-east-1 | grep InstanceId

Output

i-xxxx

Terminate Instance either thru the AWS Web Console or using the CLI

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

Verify that the instance is being shut down.

aws ec2 describe-instances --region=us-east-1

 Stop or Terminate EC2 instance using the AWS CLI

Stop or Terminate EC2 instance using the AWS CLI

Stop the instance (skip this as it doesn’t work for spot instances)

aws ec2 stop-instances --region=us-east-1 --instance-ids i-xxxx

Get the following error message.

aws ec2 stop-instances –region=us-east-1 –instance-ids i-041a702cc9f7f7b5d

An error occurred (UnsupportedOperation) when calling the StopInstances operation: You can’t stop the Spot Instance ‘i-041a702cc9f7f7b5d’ because it is associated with a one-time Spot Instance request. You can only stop Spot Instances associated with persistent Spot Instance requests.

Note sure how to do a persistent spot instance request .

Terminate Instance

aws ec2 terminate-instances --region=us-east-1 --instance-ids i-xxxx

Verify that the instance is being shut down.

aws ec2 describe-instances --region=us-east-1

 Use CycleCloud pre-installed with software and data.

 Intermediate Tutorial

Use CycleCloud pre-installed with software and data.

Step by step instructions for running the CMAQ 12US2 Benchmark for 2 days on a CycleCloud

https://docs.microsoft.com/en-us/azure/cyclecloud/download-cluster-templates?view=cyclecloud-8

Customized templates can be imported into CycleCloud using the CycleCloud CLI:

cyclecloud import_template -f templates/template-name.template.txt

Proximity Placement Groups
To get VMs as close as possible, achieving the lowest possible latency, you should deploy them within a proximity placement group.

A proximity placement group is a logical grouping used to make sure that Azure compute resources are physically located close to each other. Proximity placement groups are useful for workloads where low latency is a requirement.
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/proximity-placement-groups

 Use ParallelCluster without Software and Data pre-installed on c6a.48xlarge ParallelCluster

 CMAQv5.4 on Parallel Cluster Advanced Tutorial (optional)

Use ParallelCluster without Software and Data pre-installed on c6a.48xlarge ParallelCluster

Step by step instructions to configuring and running a ParallelCluster for the CMAQ 12US1 benchmark with instructions to install the libraries and software.

Notice

Skip this tutorial if you successfully completed the CMAQv5.4 on Parallel Cluster Intermediate Tutorial.
Unless you need to build the CMAQ libraries and code and run on a different family of compute nodes, such as the c6gn.16xlarge compute nodes AMD Graviton.

Activate the virtual environment to use the ParallelCluster command line

source ~/apc-ve/bin/activate
source ~/.nvm/nvm.sh

Upgrade to get the latest version of ParallelCluster

python3 -m pip install --upgrade "aws-parallelcluster"

Verify that the ParallelCluster AWS CLI is installed by checking the version

pcluster version

Output:

		{
 "version": "3.6.0"
}

Create CMAQ Cluster using SPOT pricing

Use an existing yaml file from the git repo to create a ParallelCluster

cd /your/local/machine/install/path/

Use a configuration file from the github repo that was cloned to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq/yaml

Edit the c6a-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

vi c6a-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

Note

	the c6a-48xlarge*.yaml is configured to use SPOT instance pricing for the compute nodes.

	the c6a-48xlarge*.yaml is configured to the the c6a-48xlarge as the compute node, with up to 10 compute nodes, specified by MaxCount: 10.

	the c6a-48xlarge*.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (192 virtual cpus reduced to 96 cpus)

	the c6a-48xlarge*.yaml is configured to enable the setting of a placement group to allow low inter-node latency

	the c6a-48xlarge*.yaml is configured to enables the elastic fabric adapter

	given this yaml configuration, the maximum number of PEs that could be used to run CMAQ is 96 cpus x 10 = 960, the max settings for NPCOL, NPROW is NPCOL = 24, NPROW = 40 or NPCOL=40, NPROW=24 in the CMAQ run script. Note: CMAQ does not scale well beyond 2-3 compute nodes.

Replace the key pair and subnet ID in the c6a-48xlarge*.yaml file with the values created when you configured the demo cluster

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c6a.large
 Networking:
 SubnetId: subnet-xx-xx-xx << replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your_key << replace
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 CapacityType: SPOT
 Networking:
 SubnetIds:
 - subnet-xx-xx-x x << replace
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: c6a.48xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200

The Yaml file for the c6a-48xlarge contains the settings as shown in the following diagram.

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c6a.large head node and c6a.48xlarge compute nodes using SPOT pricing
[image: c6a-4xlarge yaml configuration]

Create the c6a-48xlarge pcluster

pcluster create-cluster --cluster-configuration c6a-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml --cluster-name cmaq --region us-east-1

Check on status of cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Start the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-1 --cluster-name cmaq

Note

Notice that the c6a-48xlarge yaml configuration file contains a setting for PlacementGroup.

PlacementGroup:
 Enabled: true

A placement group is used to get the lowest inter-node latency.

A placement group guarantees that your instances are on the same networking backbone.

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Check what modules are available on the cluster

module avail

Load the openmpi module

module load openmpi/4.1.4

Load the Libfabric module

module load libfabric-aws/1.16.1amzn1.0

Verify the gcc compiler version is greater than 8.0

gcc --version

output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See also

Link to the AWS Enhanced Networking Adapter Documentation

See also

ParallelCluster User Manual

 Use ParallelCluster without Software and Data pre-installed on hpc6a.48xlarge ParallelCluster

 CMAQv5.4 on Parallel Cluster Advanced Tutorial (optional)

Use ParallelCluster without Software and Data pre-installed on hpc6a.48xlarge ParallelCluster

Step by step instructions to configuring and running a ParallelCluster for the CMAQ 12US1 benchmark with instructions to install the libraries and software.

Notice

Skip this tutorial if you successfully completed the CMAQv5.4 on Parallel Cluster Intermediate Tutorial.
Unless you need to build the CMAQ libraries and code and run on a different family of compute nodes, such as the c6gn.16xlarge compute nodes AMD Graviton.

Activate the virtual environment to use the ParallelCluster command line

source ~/apc-ve/bin/activate
source ~/.nvm/nvm.sh

Upgrade to get the latest version of ParallelCluster

python3 -m pip install --upgrade "aws-parallelcluster"

Verify that the ParallelCluster AWS CLI is installed by checking the version

pcluster version

Output:

		{
 "version": "3.6.0"
}

Create CMAQ Cluster using ONDEMAND pricing

Use an existing yaml file from the git repo to create a ParallelCluster

cd /your/local/machine/install/path/

Use a configuration file from the github repo that was cloned to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq/yaml

Edit the hpc6a-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

vi hpc6a-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml

Note

	the hpc6a-48xlarge*.yaml is configured to use ONDEMAND instance pricing for the compute nodes.

	the hpc6a-48xlarge*.yaml is configured to the the hpc6a-48xlarge as the compute node, with up to 10 compute nodes, specified by MaxCount: 10.

	the hpc6a-48xlarge*.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (192 virtual cpus reduced to 96 cpus)

	the hpc6a-48xlarge*.yaml is configured to enable the setting of a placement group to allow low inter-node latency

	the hpc6a-48xlarge*.yaml is configured to enables the elastic fabric adapter

	given this yaml configuration, the maximum number of PEs that could be used to run CMAQ is 96 cpus x 10 = 960, the max settings for NPCOL, NPROW is NPCOL = 24, NPROW = 40 or NPCOL=40, NPROW=24 in the CMAQ run script. Note: CMAQ does not scale well beyond 2-3 compute nodes.

Note, you need to create a demo cluster in the us-east-2b region to use the hpc6a.48xlarge compute nodes.

pcluster configure --config new-hello-world-us-east-2b.yaml

AWS Region ID [us-east-2]: 16
select key pair that is available - you may need to create a new key pair for that region or have your administrator create one for you
Scheduler [slurm]: 1
Operating System [alinux2]: 4
Head node instance type [t2.micro]:
Number of queues [1]:
Name of queue 1 [queue1]:
Number of compute resources for queue1 [1]:
Compute instance type for compute resource 1 in queue1 [t2.micro]:
Maximum instance count [10]:
Automate VPC creation? (y/n) [n]: y
Availability Zone [us-east-2a]: 2
Network Configuration [Head node in a public subnet and compute fleet in a private subnet]: 2

getting an error:
ERROR during handling of the VPC in the create phase.
The maximum number of VPCs has been reached.

The default setting for maximum number of VPCs is 5. Need to delete a VPC and rerun above command.

Replace the key pair and subnet ID in the c6a-48xlarge*.yaml file with the values created when you configured the demo cluster

Region: us-east-2
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c6a.large
 Networking:
 SubnetId: subnet-xx-xx-xx << replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your_key << replace
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 CapacityType: ONDEMAND
 Networking:
 SubnetIds:
 - subnet-xx-xx-x x << replace
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: hpc6a.48xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 EbsSettings:
 Encrypted: false
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://cmas-cmaq

The Yaml file for the hpc6a-48xlarge contains the settings as shown in the following diagram.

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c6a.large head node and c6a.48xlarge compute nodes using ONDEMAND pricing
[image: hpc6a-4xlarge yaml configuration]

Create the hpc6a-48xlarge pcluster

pcluster create-cluster --cluster-configuration hpc6a-48xlarge.ebs_unencrypted_installed_public_ubuntu2004.fsx_import.yaml --cluster-name cmaq --region us-east-2

Check on status of cluster

pcluster describe-cluster --region=us-east-2 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Start the compute nodes

pcluster update-compute-fleet --region us-east-2 --cluster-name cmaq --status START_REQUESTED

Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --region=us-east-2 --cluster-name cmaq

Note

Notice that the hpc6a-48xlarge yaml configuration file contains a setting for PlacementGroup.

PlacementGroup:
 Enabled: true

A placement group is used to get the lowest inter-node latency.

A placement group guarantees that your instances are on the same networking backbone.

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Check what modules are available on the cluster

module avail

Load the openmpi module

module load openmpi

Load the Libfabric module

module load libfabric-aws

Verify the gcc compiler version is greater than 8.0

gcc --version

output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See also

Link to the AWS Enhanced Networking Adapter Documentation

See also

ParallelCluster User Manual

 Run CMAQ

Run CMAQ

Verify that you have an updated set of run scripts from the pcluster-cmaq repo

cd /shared/pcluster-cmaq/run_scripts/cmaqv54+/

ls -lrt run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh

diff run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh /shared/pcluster-cmaq/run_scripts/cmaqv54+/

If they don’t exist or are not identical, then copy the run scripts from the repo

cp /shared/pcluster-cmaq/run_scripts/cmaqv54+/run_cctm* /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Verify that the input data is imported to /fsx from the S3 Bucket

ls /fsx

Preloading the files

Amazon FSx copies data from your Amazon S3 data repository when a file is first accessed. CMAQ is sensitive to latencies, so it is best to preload contents of individual files or directories using the following command:

cd /fsx
nohup find /fsx/ -type f -print0 | xargs -0 -n 1 sudo lfs hsm_restore &

Make directory to match what run scripts are using

mkdir -p /fsx/data/CMAQ_Modeling_Platform_2018

link directory

`ln -s /fsx/CMAQv5.4_2018_12US1_Benchmark_2Day_Input/2018_12US1 .

Verify the data

ls /fsx/data/CMAQ_Modeling_Platform_2018/2018_12US1

Create the output directory

mkdir -p /fsx/data/output

Run the 12US1 Domain on 192 pes

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh

Note, it will take about 3-5 minutes for the compute notes to start up. This is reflected in the Status (ST) of CF (configuring)

Check the status in the queue

squeue -u ubuntu

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu CF 2 queue1-dy-compute-resource-1-[1-2]

After 5 minutes the status will change once the compute nodes have been created and the job is running

squeue -u ubuntu

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu R 0:58 2 queue1-dy-compute-resource-1-[1-2]

The 192 pe job should take 62 minutes to run (31 minutes per day)

check on the status of the cluster using CloudWatch

(optional)

Cloudwatch Dashboard
Monitoring Dashboard for ParallelCluster

check the timings while the job is still running using the following command

cd /fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_2x96_classic/

grep 'Processing completed' CTM_LOG_001*

Output:

 Processing completed... 6.3736 seconds
 Processing completed... 5.0755 seconds
 Processing completed... 5.1098 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

`tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.192.16x12pe.2day.20171222start.2x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 192
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1853.4
02 2017-12-23 2035.1
 Total Time = 3888.50
 Avg. Time = 1944.25

Submit a request for a 96 pe job (1 x 96 pe) or 1 nodes instead of 2 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x96.ncclassic.csh

Check on the status in the queue

squeue -u ubuntu

Note, it takes about 5 minutes for the compute nodes to be initialized, once the job is running the ST or status will change from CF (configure) to R

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu R 7:20 1 queue1-dy-compute-resource-1-3

Check the status of the run

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.1x96.log

The 96 pe job should take 104 minutes to run (52 minutes per day)
Note, this is a different domain (12US1 versus 12US2) than what was used for the HPC6a.48xlarge Benchmark runs, so the timings are not directly comparible.
The 12US1 domain is larger than 12US2.

‘12US1’
‘LAM_40N97W’ -2556000. -1728000. 12000. 12000. 459 299 1

Check whether the scheduler thinks there are cpus or vcpus

sinfo -lN

Output:

Wed Jun 14 00:49:36 2023
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
queue1-dy-compute-resource-1-1 1 queue1* allocated 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-2 1 queue1* allocated 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-3 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-4 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-5 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-6 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-7 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-8 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-9 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-10 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none

Note: on a c6a.24xlarge, the number of virtual cpus is 192.

If the YAML contains the Compute Resources Setting of DisableSimultaneousMultithreading: false, then all 192 vcpus will be used

If DisableSimultaneousMultithreading: true, then the number of cpus is 96 and there are no virtual cpus.

Verify that the yaml file used DisableSimultaneousMultithreading: true

When the jobs are both submitted to the queue they will be dispatched to different compute nodes.

squeue

output

Submitted batch job 4
ip-10-0-1-243:/shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu CF 0:01 1 queue1-dy-compute-resource-1-3
 3 queue1 CMAQ ubuntu R 21:28 2 queue1-dy-compute-resource-1-[1-2]

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.1x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3153.2
02 2017-12-23 3485.9
 Total Time = 6639.10
 Avg. Time = 3319.55

Based on the Total Time, adding an additional node gave a speed-up of 1.7.
6639.10/3888.50 = 1.7074

Submit a job to run on 288 pes, 3x96 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x96.ncclassic.csh

Verify that it is running on 3 nodes

sbatch

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 4:29 3 queue1-dy-compute-resource-1-[1-3]

Check the log for how quickly the job is running

grep 'Processing completed' run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.288.18x16pe.2day.20171222start.3x96.log

Output:

 Processing completed... 4.0245 seconds
 Processing completed... 4.0263 seconds
 Processing completed... 3.9885 seconds
 Processing completed... 3.9723 seconds
 Processing completed... 3.9934 seconds
 Processing completed... 4.0075 seconds
 Processing completed... 3.9871 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.288.18x16pe.2day.20171222start.3x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 288
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1475.9
02 2017-12-23 1580.7
 Total Time = 3056.60
 Avg. Time = 1528.30

Once you have submitted a few benchmark runs and they have completed successfully, proceed to the next chapter.

 Run CMAQ

Run CMAQ

Verify that you have an updated set of run scripts from the pcluster-cmaq repo

cd /shared/pcluster-cmaq/run_scripts/cmaqv54+/

ls -lrt run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh

diff run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh /shared/pcluster-cmaq/run_scripts/cmaqv54+/

If they don’t exist or are not identical, then copy the run scripts from the repo

cp /shared/pcluster-cmaq/run_scripts/cmaqv54+/run_cctm* /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

Verify that the input data is imported to /fsx from the S3 Bucket

ls /fsx

Preloading the files

Amazon FSx copies data from your Amazon S3 data repository when a file is first accessed. CMAQ is sensitive to latencies, so it is best to preload contents of individual files or directories using the following command:

cd /fsx
nohup find /fsx/ -type f -print0 | xargs -0 -n 1 sudo lfs hsm_restore &

Make directory to match what run scripts are using

mkdir -p /fsx/data/CMAQ_Modeling_Platform_2018

Change directories

cd /fsx/data/CMAQ_Modeling_Platform_2018

link directory

`ln -s /fsx/CMAQv5.4_2018_12US1_Benchmark_2Day_Input/2018_12US1 .

Verify the data

ls /fsx/data/CMAQ_Modeling_Platform_2018/2018_12US1

Create the output directory

mkdir -p /fsx/data/output

Run the 12US1 Domain on 192 pes

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.2x96.ncclassic.csh

Note, it will take about 3-5 minutes for the compute notes to start up. This is reflected in the Status (ST) of CF (configuring)

Check the status in the queue

squeue -u ubuntu

Output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu CF 2 queue1-dy-compute-resource-1-[1-2]

After 5 minutes the status will change once the compute nodes have been created and the job is running

squeue -u ubuntu

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 3 queue1 CMAQ ubuntu R 0:58 2 queue1-dy-compute-resource-1-[1-2]

The 192 pe job should take 62 minutes to run (31 minutes per day)

check on the status of the cluster using CloudWatch

(optional)

Cloudwatch Dashboard
Monitoring Dashboard for ParallelCluster

check the timings while the job is still running using the following command

cd /fsx/data/output/output_v54+_cb6r5_ae7_aq_WR413_MYR_gcc_2018_12US1_2x96_classic/

grep 'Processing completed' CTM_LOG_001*

Output:

 Processing completed... 6.3736 seconds
 Processing completed... 5.0755 seconds
 Processing completed... 5.1098 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

`tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.192.16x12pe.2day.20171222start.2x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 192
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1853.4
02 2017-12-23 2035.1
 Total Time = 3888.50
 Avg. Time = 1944.25

Submit a request for a 96 pe job (1 x 96 pe) or 1 nodes instead of 2 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.1x96.ncclassic.csh

Check on the status in the queue

squeue -u ubuntu

Note, it takes about 5 minutes for the compute nodes to be initialized, once the job is running the ST or status will change from CF (configure) to R

Output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu R 7:20 1 queue1-dy-compute-resource-1-3

Check the status of the run

tail run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.1x96.log

The 96 pe job should take 104 minutes to run (52 minutes per day)
Note, this is a different domain (12US1 versus 12US2) than what was used for the HPC6a.48xlarge Benchmark runs, so the timings are not directly comparible.
The 12US1 domain is larger than 12US2.

‘12US1’
‘LAM_40N97W’ -2556000. -1728000. 12000. 12000. 459 299 1

Check whether the scheduler thinks there are cpus or vcpus

sinfo -lN

Output:

Wed Jun 14 00:49:36 2023
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY TMP_DISK WEIGHT AVAIL_FE REASON
queue1-dy-compute-resource-1-1 1 queue1* allocated 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-2 1 queue1* allocated 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-3 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-4 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-5 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-6 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-7 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-8 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-9 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none
queue1-dy-compute-resource-1-10 1 queue1* idle~ 96 96:1:1 373555 0 1 dynamic, none

Note: on a c6a.24xlarge, the number of virtual cpus is 192.

If the YAML contains the Compute Resources Setting of DisableSimultaneousMultithreading: false, then all 192 vcpus will be used

If DisableSimultaneousMultithreading: true, then the number of cpus is 96 and there are no virtual cpus.

Verify that the yaml file used DisableSimultaneousMultithreading: true

When the jobs are both submitted to the queue they will be dispatched to different compute nodes.

squeue

output

Submitted batch job 4
ip-10-0-1-243:/shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 4 queue1 CMAQ ubuntu CF 0:01 1 queue1-dy-compute-resource-1-3
 3 queue1 CMAQ ubuntu R 21:28 2 queue1-dy-compute-resource-1-[1-2]

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.96.12x8pe.2day.20171222start.1x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 96
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 3153.2
02 2017-12-23 3485.9
 Total Time = 6639.10
 Avg. Time = 3319.55

Based on the Total Time, adding an additional node gave a speed-up of 1.7.
6639.10/3888.50 = 1.7074

Submit a job to run on 288 pes, 3x96 nodes

sbatch run_cctm_2018_12US1_v54_cb6r5_ae6.20171222.3x96.ncclassic.csh

Verify that it is running on 3 nodes

sbatch

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 5 queue1 CMAQ ubuntu R 4:29 3 queue1-dy-compute-resource-1-[1-3]

Check the log for how quickly the job is running

grep 'Processing completed' run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.288.18x16pe.2day.20171222start.3x96.log

Output:

 Processing completed... 4.0245 seconds
 Processing completed... 4.0263 seconds
 Processing completed... 3.9885 seconds
 Processing completed... 3.9723 seconds
 Processing completed... 3.9934 seconds
 Processing completed... 4.0075 seconds
 Processing completed... 3.9871 seconds

When the job has completed, use tail to view the timing from the log file.

cd /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/

tail -n 30 run_cctm5.4+_Bench_2018_12US1_cb6r5_ae6_20200131_MYR.288.18x16pe.2day.20171222start.3x96.log

Output:

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2017-12-22
End Day: 2017-12-23
Number of Simulation Days: 2
Domain Name: 12US1
Number of Grid Cells: 4803435 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 288
 All times are in seconds.

Num Day Wall Time
01 2017-12-22 1475.9
02 2017-12-23 1580.7
 Total Time = 3056.60
 Avg. Time = 1528.30

Once you have submitted a few benchmark runs and they have completed successfully, proceed to the next chapter.

 Install CMAQ sofware and libraries on ParallelCluster

Install CMAQ sofware and libraries on ParallelCluster

Login to updated cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Change shell to use .tcsh

Note

This command depends on what OS you have installed on the ParallelCluster

sudo usermod -s /bin/tcsh ubuntu

or

sudo usermod -s /bin/tcsh centos

Log out and log back in to have the tcsh shell be active

exit

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Check to see the tcsh shell is default

echo $SHELL

The following instructions assume that you will be installing the software to a /shared/build directory

mkdir /shared/build

Install the pcluster-cmaq git repo to the /shared directory

cd /shared

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Check what modules are available on the cluster

module avail

Load the openmpi module

module load openmpi/4.1.4

Load the Libfabric module

module load libfabric-aws/1.16.1amzn1.0

Verify the gcc compiler version is greater than 8.0

gcc --version

Output:

gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Change directories to install and build the libraries and CMAQ

cd /shared/pcluster-cmaq/install

The install process currently uses .csh scripts to install the libraries and CMAQ.
An alternative is to keep a copy of the source code for netcdf-C and netcdf-Fortran and all of the other underlying code on an S3 bucket and to use custom bootstrap actions to build the sofware as the ParallelCluster is provisioned.

The following link provides instructions on how to create a custom bootstrap action to pre-load software from an S3 bucket to the ParallelCluster at the time that the cluster is created.

Custom Bootstrap Actions

Build netcdf C and netcdf F libraries - these scripts work for the gcc 8+ compiler

Note, if this script fails, it is typically because NCAR has released a new version of netCDF C or Fortran, so the old version is no longer available, or if they have changed the name or location of the download file.

./gcc_netcdf_cluster.csh

A .cshrc script with LD_LIBRARY_PATH was copied to your home directory, enter the shell again and check environment variables that were set using

cat ~/.cshrc

If the .cshrc was not created use the following command to create it

cp dot.cshrc.pcluster ~/.cshrc

Execute the shell to activate it

csh

env

Verify that you see the following setting

Output:

LD_LIBRARY_PATH=/opt/amazon/openmpi/lib64:/shared/build/netcdf/lib:/shared/build/netcdf/lib

Build I/O API library

./gcc_ioapi_cluster.v36.csh

Confirm library was created

ls -rlt /shared/build/ioapi-3.2/Linux2_x86_64gfort/*.a

Output:

-rw-rw-r-- 1 ubuntu ubuntu 23776724 Jun 30 14:46 /shared/build/ioapi-3.2/Linux2_x86_64gfort/libioapi.a

Confirm m3tools were built

ls -rlt /shared/build/ioapi-3.2/Linux2_x86_64gfort/m3xtract

Output:

-rwxrwxr-x 1 ubuntu ubuntu 16812336 Jun 30 14:46 /shared/build/ioapi-3.2/Linux2_x86_64gfort/m3xtract

Build CMAQ

./gcc_cmaq54+_pcluster.csh

Check to confirm that the cmaq executable has been built

ls /shared/build/openmpi_gcc/CMAQ_v54+/CCTM/scripts/BLD_CCTM_v54+_gcc/*.exe

Install netCDF libraries that use HDF5 and support nc4 compressed files

Need to have this version of the library installed to uncompress the *.nc4 data using the indexer.csh script.

cd /shared/pcluster-cmaq

./gcc_install_hdf5.csh

The following instructions are not typically needed.

Install gh for github authentication on cluster

See instructions here:

Install GH on ubuntu

Use gh authentication

Remove gh and clean up after done using github (before saving image) so that the credentials are not shared

`sudo apt remove gh`

 Use ParallelCluster without Software and Data pre-installed

 Advanced Tutorial (optional)

Use ParallelCluster without Software and Data pre-installed

Step by step instructions to configuring and running a ParallelCluster for the CMAQ 12US2 benchmark with instructions to install the libraries and software.

Notice

Skip this tutorial if you successfully completed the Intermediate Tutorial.
Unless you need to build the CMAQ libraries and code and run on a different family of compute nodes, such as the c6gn.16xlarge compute nodes AMD Graviton.

Create CMAQ Cluster using SPOT pricing

Use an existing yaml file from the git repo to create a ParallelCluster

cd /your/local/machine/install/path/

Use a configuration file from the github repo that was cloned to your local machine

git clone -b main https://github.com/CMASCenter/pcluster-cmaq.git pcluster-cmaq

cd pcluster-cmaq

Edit the c5n-4xlarge.yaml

vi c5n-4xlarge.yaml

Note

	the c5n-4xlarge.yaml is configured to use SPOT instance pricing for the compute nodes.

	the c5n-4xlarge.yaml is configured to the the c5n-4xlarge as the compute node, with up to 10 compute nodes, specified by MaxCount: 10.

	the c5n-4xlarge.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (16 virtual cpus reduced to 8 cpus)

	given this yaml configuration, the maximum number of PEs that could be used to run CMAQ is 8 cpus x 10 = 80, the max settings for NPCOL, NPROW is NPCOL = 8, NPROW = 10 or NPCOL=10, NPROW=8 in the CMAQ run script.

Replace the key pair and subnet ID in the c5n-4xlarge.yaml file with the values created when you configured the demo cluster

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c5n.large
 Networking:
 SubnetId: subnet-xx-xx-xx << replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your_key << replace
Scheduling:
 Scheduler: slurm
 SlurmQueues:
 - Name: queue1
 CapacityType: SPOT
 Networking:
 SubnetIds:
 - subnet-xx-xx-x x << replace
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: c5n.4xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200

The Yaml file for the c5n-4xlarge contains the settings as shown in the following diagram.

Figure 1. Diagram of YAML file used to configure a ParallelCluster with a c5n.large head node and c5n.4xlarge compute nodes using SPOT pricing
[image: c5n-4xlarge yaml configuration]

Create the c5n-4xlarge pcluster

pcluster create-cluster --cluster-configuration c5n-4xlarge.yaml --cluster-name cmaq --region us-east-1

Check on status of cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Start the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Show compute nodes

scontrol show nodes

Output:

NodeName=queue1-dy-compute-resource-1-10 CoresPerSocket=1
 CPUAlloc=0 CPUTot=8 CPULoad=N/A
 AvailableFeatures=dynamic,c5n.4xlarge,compute-resource-1
 ActiveFeatures=dynamic,c5n.4xlarge,compute-resource-1
 Gres=(null)
 NodeAddr=queue1-dy-compute-resource-1-10 NodeHostName=queue1-dy-compute-resource-1-10
 RealMemory=1 AllocMem=0 FreeMem=N/A Sockets=8 Boards=1
 State=IDLE+CLOUD+POWERED_DOWN ThreadsPerCore=1 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A
 Partitions=queue1
 BootTime=None SlurmdStartTime=None
 LastBusyTime=Unknown
 CfgTRES=cpu=8,mem=1M,billing=8
 AllocTRES=
 CapWatts=n/a
 CurrentWatts=0 AveWatts=0
 ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

Update the compute nodes

Before building the software, verify that you can update the compute nodes from the c5n.4xlarge to c5n.18xlarge

By updating the compute node from a c5n.4xlarge (max 8 cpus per compute node) to c5n.18xlarge (max 36 cpus per compute node) would allow the benchmark case to be run on up to 360 cpus (36 cpu/node x 10 nodes).

Note

Provisioning 10 c5n.18xlarge in one region may be difficult. In practice, it is possible to obtain 8 c5n.18xlarge compute nodes, with 36 cpu/node x 8 nodes = 288 cpus.

Note

The c5n.18xlarge requires that the elastic network adapter is enabled in the yaml file. Exit the pcluster and return to your local command line.

If you only modified the yaml file to update the compute node identity, without making additional updates to the network and other settings, then you would not achieve all of the benefits of using the c5n.18xlarge compute node in the ParallelCluster.

For this reason, a yaml file that contains these advanced options to support the c5n.18xlarge compute instance will be used to upgrade the ParallelCluster from c5n.5xlarge to c5n.18xlarge.

Exit the cluster

exit

Stop the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status STOP_REQUESTED

Verify that the compute nodes are stopped

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

keep rechecking until you see the following status “computeFleetStatus”: “STOPPED”,

Examine the differences between YAML files

The YAML file for the c5n.xlarge head node and c5n18xlarge compute Node contains additional settings than the YAML file that used the c5n.4xlarge as the compute node.

Note

	the c5n-18xlarge.yaml is configured to use SPOT instance pricing for the compute nodes.

	the c5n-18xlarge.yaml is configured to the the c5n-18xlarge as the compute node, with up to 10 compute nodes, specified by MaxCount: 10.

	the c5n-18xlarge.yaml is configured to disable multithreading (This option restricts the computing to CPUS rather than allowing the use of all virtual CPUS. (72 virtual cpus reduced to 36 cpus)

	the c5n-18xlarge.yaml is configured to enable the setting of a placement group to allow low inter-node latency

	the c5n-18xlarge.yaml is configured to enables the elastic fabric adapter

Figure 2. Diagram of YAML file used to configure a ParallelCluster with a c5n-xlarge head node and c5n-18xlarge compute nodes(36CPU per Node)

[image: c5n-18xlarge yaml configuration]

Note

Notice that the c5n-18xlarge yaml configuration file contains a setting for PlacementGroup.

PlacementGroup:
 Enabled: true

A placement group is used to get the lowest inter-node latency.

A placement group guarantees that your instances are on the same networking backbone.

Edit the YAML file for c5n.n18xlarge

You will need to edit the c5n-18xlarge.yaml to specify your KeyName and SubnetId (use the values generated in your new-hello-world.yaml) This yaml file specifies ubuntu2004 as the OS, c5n.large for the head node, c5n.18xlarge as the compute nodes and both a /shared Ebs directory(for software install) and a /fsx Lustre File System (for Input and Output Data) and enables the elastic fabric adapter.

vi c5n-18xlarge.yaml

Output:

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c5n.large
 Networking:
 SubnetId: subnet-018cfea3edf3c4765 <<< replace
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: centos <<< replace
Scheduling:
 Scheduler: slurm
 SlurmSettings:
 ScaledownIdletime: 5
 SlurmQueues:
 - Name: queue1
 CapacityType: SPOT
 Networking:
 SubnetIds:
 - subnet-018cfea3edf3c4765 <<< replace
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: c5n.18xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa: <<< Note new section that enables elastic fabric adapter
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200

Create the c5n.18xlarge cluster

Use the pcluster command to update cluster to use c5n.18xlarge compute node

pcluster update-cluster --region us-east-1 --cluster-name cmaq --cluster-configuration c5n-18xlarge.yaml

Verify that the compute nodes have been updated

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

{
 "creationTime": "2022-02-23T17:39:42.953Z",
 "headNode": {
 "launchTime": "2022-02-23T17:48:03.000Z",
 "instanceId": "xxx-xx-xx",
 "publicIpAddress": "xx-xx-xx",
 "instanceType": "c5n.large",
 "state": "running",
 "privateIpAddress": "xx-xx-xx"
 },
 "version": "3.1.1",
 "clusterConfiguration": {
 },
 "tags": [
 {
 "value": "3.1.1",
 "key": "parallelcluster:version"
 }
],
 "cloudFormationStackStatus": "UPDATE_IN_PROGRESS",
 "clusterName": "cmaq",
 "computeFleetStatus": "STOPPED",
 "cloudformationStackArn":
 "lastUpdatedTime": "2022-02-23T17:56:31.114Z",
 "region": "us-east-1",
 "clusterStatus": "UPDATE_IN_PROGRESS"

Wait 5 to 10 minutes for the update to be completed

Keep rechecking status until update is completed and computeFleetStatus is RUNNING

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Output:

{
 "creationTime": "2022-02-23T17:39:42.953Z",
 "headNode": {
 "launchTime": "2022-02-23T17:48:03.000Z",
 "instanceId": "xx-xx-xxx",
 "publicIpAddress": "xx-xx-xx",
 "instanceType": "c5n.large",
 "state": "running",
 "privateIpAddress": "xx-xxx-xx"
 },
 "version": "3.1.1",
 "clusterConfiguration": {
 },
 "tags": [
 {
 "value": "3.1.1",
 "key": "parallelcluster:version"
 }
],
 "cloudFormationStackStatus": "UPDATE_COMPLETE",
 "clusterName": "cmaq",
 "computeFleetStatus": "STOPPED",
 "cloudformationStackArn":
 "lastUpdatedTime": "2022-02-23T17:56:31.114Z",
 "region": "us-east-1",
 "clusterStatus": "UPDATE_COMPLETE"
}

Wait until UPDATE_COMPLETE message is received, then proceed.

Re-start the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Verify status of cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

Wait until you see

computeFleetStatus": "RUNNING",

Login to c5n.18xlarge cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Check what modules are available on the cluster

module avail

Load the openmpi module

module load openmpi/4.1.1

Load the Libfabric module

module load libfabric-aws/1.13.0amzn1.0

Verify the gcc compiler version is greater than 8.0

gcc --version

output:

gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 Copyright (C) 2019 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See also

Link to the AWS Enhanced Networking Adapter Documentation

See also

ParallelCluster User Manual

 Submit a 180 pe job

Submit a 180 pe job

sbatch run_cctm_2016_12US2.180pe.5x36.pcluster.csh

tail -n 50 run_cctmv5.3.3_Bench_2016_12US2.10x18pe.2day.pcluster.log

Output:

CMAQ Processing of Day 20151223 Finished at Tue Feb 22 22:54:32 UTC 2022

\\\\\=====\\\\\=====\\\\\=====\\\\\=====/////=====/////=====/////=====/////

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 180
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2241.14
02 2015-12-23 1963.18
 Total Time = 4204.32
 Avg. Time = 2102.16

Question - is this performance poor due to using Centos7 and the older gcc compiler?

gcc --version

Output:

gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Only reason that I switched to centos7 over ubuntu2004 is that when I tried to create a ParallelCluster with ubuntu2004 on Feb. 22, 2022, I could not find slurm or sbatch, so I could notsubmit jobs to the queue. (I had not run into this previously, when I saved the EBS Snapshot as encrypted.

Submit a 288 pe job

sbatch run_cctm_2016_12US2.288pe.8x36.pcluster.csh

tail -n 50 run_cctmv5.3.3_Bench_2016_12US2.16x18pe.2day.pcluster.log

==============================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 288
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 1524.55
02 2015-12-23 1362.90
 Total Time = 2887.45
 Avg. Time = 1443.72

 Create parallelcluster with an un-encrypted EBS volume and load software to share publically

Create parallelcluster with an un-encrypted EBS volume and load software to share publically

Examine a yaml file that has specifies that the /shared ebs volume will be un-encrypted.

Change directories on your local machine to the location where the pcluster-cmaq github repo was installed.

cd pluster-cmaq

Edit the yaml file to use your account’s subnet ID and KeyName

vi c5n-18xlarge.ebs_unencrypted.fsx_import.yaml

Output:

Region: us-east-1
Image:
 Os: ubuntu2004
HeadNode:
 InstanceType: c5n.large
 Networking:
 SubnetId: subnet-xx-xxx-xx <<< replace with your subnet ID
 DisableSimultaneousMultithreading: true
 Ssh:
 KeyName: your-key <<< replace with your KeyName
Scheduling:
 Scheduler: slurm
 SlurmSettings:
 ScaledownIdletime: 5
 SlurmQueues:
 - Name: queue1
 CapacityType: SPOT
 Networking:
 SubnetIds:
 - subnet-xx-xx-xxx <<< replace with your subnet ID
 PlacementGroup:
 Enabled: true
 ComputeResources:
 - Name: compute-resource-1
 InstanceType: c5n.18xlarge
 MinCount: 0
 MaxCount: 10
 DisableSimultaneousMultithreading: true
 Efa:
 Enabled: true
 GdrSupport: false
SharedStorage:
 - MountDir: /shared
 Name: ebs-shared
 StorageType: Ebs
 EbsSettings:
 Encrypted: false <<< notice option to make Encrypted is set to false (default is true)
 - MountDir: /fsx
 Name: name2
 StorageType: FsxLustre
 FsxLustreSettings:
 StorageCapacity: 1200
 ImportPath: s3://conus-benchmark-2day

Create Cluster with ebs volume set to be un-encrypted in the yaml file

pcluster create-cluster --cluster-configuration c5n-18xlarge.ebs_unencrypted.fsx_import.yaml --cluster-name cmaq --region us-east-1

Check on status of the cluster

pcluster describe-cluster --region=us-east-1 --cluster-name cmaq

After 5-10 minutes, you see the following status: “clusterStatus”: “CREATE_COMPLETE”

Start the compute nodes

pcluster update-compute-fleet --region us-east-1 --cluster-name cmaq --status START_REQUESTED

Login to cluster

Note

Replace the your-key.pem with your Key Pair.

pcluster ssh -v -Y -i ~/your-key.pem --cluster-name cmaq

Verify Environment on Cluster

Show compute nodes

scontrol show nodes

Check to make sure elastic network adapter (ENA) is enabled

modinfo ena

lspci

Check what modules are available on the cluster

module avail

Load the openmpi module

module load openmpi/4.1.1

Load the Libfabric module

module load libfabric-aws/1.13.0amzn1.0

Verify the gcc compiler version is greater than 8.0

gcc --version

Verify that the input data is imported to /fsx from the S3 Bucket

cd /fsx/12US2

Need to make this directory and then link it to the path created when the data is copied from the S3 Bucket This is to make the paths consistent between the two methods of obtaining the input data.

mkdir -p /fsx/data/CONUS

cd /fsx/data/CONUS

ln -s /fsx/12US2 .

Create the output directory

mkdir -p /fsx/data/output

<<<<<<< HEAD:docs/user_guide_pcluster/cmaq-cluster-load-software-snapshot.md

Submit a 180 pe job

sbatch run_cctm_2016_12US2.180pe.5x36.pcluster.csh

tail -n 50 run_cctmv5.3.3_Bench_2016_12US2.10x18pe.2day.pcluster.log

Output:

CMAQ Processing of Day 20151223 Finished at Tue Feb 22 22:54:32 UTC 2022

\\\\\=====\\\\\=====\\\\\=====\\\\\=====/////=====/////=====/////=====/////

==================================
 ***** CMAQ TIMING REPORT *****
==================================
Start Day: 2015-12-22
End Day: 2015-12-23
Number of Simulation Days: 2
Domain Name: 12US2
Number of Grid Cells: 3409560 (ROW x COL x LAY)
Number of Layers: 35
Number of Processes: 180
 All times are in seconds.

Num Day Wall Time
01 2015-12-22 2241.14
02 2015-12-23 1963.18
 Total Time = 4204.32
 Avg. Time = 2102.16

gcc --version

Output:

gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Submit a 288 pe job

sbatch run_cctm_2016_12US2.288pe.8x36.